

Vitalware Documentation

Unicode in Vitalware 3.0
Document Version 1.0

Vitalware 3.0

Contents

S E C T I O N 1 Unicode	 1

Overview 1
Code Points 3
Inputting Unicode Characters 6
Graphemes 10
Index Terms 11

S E C T I O N 2 Searching	 15

Transformations 17
Regular Expressions 18
Anchors 19
Proximity 20
Conditionals 22

S E C T I O N 3 Auto‐phrasing	 23

S E C T I O N 4 Collation	 25

S E C T I O N 5 Lookup	Lists	 27

Index	 29

Unicode

Unicode in Vitalware 3.0

1

Unicode	

Overview	
Vitalware	 3.0	 sees	 implementation	 of	 support	 for	 the	 Unicode	 8.0	
(http://www.unicode.org/versions/Unicode8.0.0/)	 standard.	 While	 earlier	
versions	of	Vitalware	allowed	Unicode	 characters	 to	be	 stored	and	 retrieved,	 the	
system	did	not	interpret	the	characters	entered,	 leading	to	very	limited	searching	
functionality.	In	order	to	retrieve	a	Unicode	character	it	was	necessary	to	enter	the	
search	term	in	exactly	the	same	case	(upper	or	lower)	along	with	the	same	diacritics.	
For	example,	a	search	for	the	name	Frederic	would	not	match	Fréderic	as	the	e	
acute	character	was	not	interpreted	as	an	e	character	with	a	diacritic	associated	with	
it.	

Vitalware	3.0	supports	case	folding	and	base	character	mapping:	

 Case	 folding	 is	 similar	 to	 converting	 a	 character	 to	 its	 lower	 case	 equivalent	
except	that	it	handles	some	special	cases.	The	purpose	of	case	folding	is	to	make	
searching	case	insensitive.	One	special	case	is	that	the	German	lower	case	sharp	
s	character	 (ß)	 is	generally	written	 in	upper	case	as	SS.	So	Großen	would	be	
converted	 to	GROSSEN	 in	upper	case.	When	searching	we	would	 like	 to	enter	
either	of	the	previous	terms	and	find	all	case	variations.	In	order	to	do	this	the	ß	
character	needs	to	be	folded	to	ss	for	searching	purposes.	

 The	base	version	of	a	character	is	its	most	basic	representation	after	all	diacritics	
and	marks	have	been	removed.	For	example	the	base	character	of	é	is	e.	 	

The	combination	of	case	folding	and	base	characters	provides	the	basic	mechanisms	
required	to	provide	flexible	searching	over	the	full	range	of	Unicode	characters.	

All	data	stored	in	Vitalware	3.0	is	encoded	in	UTF‐8	format.	UTF‐8	is	a	compact	way	
of	representing	Unicode	characters,	particularly	ASCII	characters.	The	World	Wide	
Web	 has	 adopted	 UTF‐8	 as	 the	 character	 encoding	 format	 to	 be	 used	 in	 web	
documents.	Vitalware	3.0	enforces	the	use	of	UTF‐8	by	not	allowing	any	invalid	byte	
sequences	to	be	stored	in	the	system.	The	change	has	implications	for	data	imports	
as	 all	 data	 imported	must	 be	 encoded	 in	UTF‐8.	 In	 earlier	 versions	of	Vitalware,	
systems	may	 have	 been	 configured	 to	 allow	 ISO‐8859‐1	 (latin1)	 as	 the	 standard	
input	format.	ISO‐8859‐1	encoding	is	no	longer	supported.	

Searching	in	Vitalware	3.0	has	been	extended	to	include	punctuation	characters.	It	
is	now	possible	to	search	for	punctuation	either	as	individual	characters	(?)	or	as	
part	 of	 a	more	 complex	 string	 (fred@global.com).	 In	 Vitalware	 2.5	 and	 earlier	
certain	punctuation	characters	have	a	special	meaning	when	used	in	a	search.	For	
example	a	search	for	fre*	will	 find	all	words	beginning	with	the	letters	fre.	The	
introduction	 of	 punctuation	 searching	 in	 Vitalware	 3.0	 means	 that	 these	 special	

S E C T I O N 	 1 	

Unicode

2

Unicode in Vitalware 3.0

characters	need	to	be	"escaped"	to	have	their	special	meaning	applied.	Escaping	a	
character	involves	preceding	the	character	with	a	backslash	(\).	Thus,	an	Vitalware	
2.5	search	for	fre*	becomes	fre*	in	Vitalware	3.0.	

In	the	following	sections	we	explore	what	changes	have	been	implemented	and	how	
they	impact	usage	of	Vitalware	3.0.	

Unicode

Unicode in Vitalware 3.0

3

Code	Points	
The	basic	unit	of	information	in	Unicode	is	known	as	a	code	point.	A	code	point	is	
simply	a	number	between	zero	and	10FFFF16	 that	represents	a	single	entity.	Code	
points	are	generally	represented	as	hexadecimal	numbers,	that	is	base	16.	An	entity	
may	be	a:	

Entity Description

graphic	 A	 letter,	 mark,	 number,	 punctuation,	 symbol	 or	 space,	 e.g.	 the	
letter	a.	

format	 Controls	the	formatting	of	text,	e.g.	soft	hyphen	(-)	for	breaking	a	
word	over	lines.	

control	 A	control	character,	e.g.	the	tab	character	(^I).	

private‐use	 Not	defined	in	the	Unicode	8.0	standard	but	used	by	other	non‐
Unicode	scripts,	e.g.	unused	cp	1252	character,	9116.	

surrogate	 Used	to	select	supplementary	planes	in	UTF‐16.	Characters	in	the	
range	D800‐DFFF16.	

non‐character	 Permanently	 reserved	 for	 internal	use.	Characters	 in	 the	 range	
FFFE‐FFFF16	and	FDD0‐FDEF16.	

reserved	 All	unassigned	code	points,	that	is	code	points	that	are	not	one	of	
the	above.	

The	table	below	lists	some	code	points	along	with	their	representation,	 label	and	
category:	

Code	point	
(hex)

Represent‐	
ation

Label Category

E9	 é	 Latin	 small	 letter	 e	 with	
acute	

graphic	 (letter	 ‐	 lower	
case)	

600	 	 Arabic	number	sign	 format	(other)	

D6A1	 횡	 Hangul	syllable	hoeng	 graphic	(letter	‐	other)	

B4	 ´	 Acute	accent	 graphic	 (symbol	 ‐	
modifier)	

F900	 豈	 Chinese,	Japanese,	
Korean	(cjk)	
compatibility	ideograph	

graphic	(letter	‐	other)	

Unicode

4

Unicode in Vitalware 3.0

A	piece	of	 text	 is	 logically	 just	 a	 sequence	of	 code	points,	where	each	 code	point	
represents	a	part	of	the	text.	For	example,	the	piece	of	text:	

豈 ↔ how?	 	

consists	of	the	following	code	points:	

Code point
(hex)

Represent-
ation

Label

F900	 豈	 Chinese,	 Japanese,	 Korean	 (cjk)	 compatibility	
ideograph	

20	 Space	

2194	 ↔	 Left	right	arrow	

20	 Space	

68	 h	 Latin	small	letter	h	

6F	 o	 Latin	small	letter	o	

77	 w	 Latin	small	letter	w	

3F	 ?	 Question	mark	

The	code	point	sequence	defines	the	text	itself.	There	are	a	number	of	different	ways	
that	the	code	point	sequence	can	be	saved	on	a	computer.	One	method,	called	UTF‐
32,	represents	each	code	point	as	a	32	bit	(4	byte)	quantity.	Such	a	scheme	uses	a	
large	amount	of	storage	space	as	most	text	uses	the	Latin	alphabet	(ASCII),	which	
can	be	represented	in	a	single	byte.	 	

Another	encoding	is	UTF‐8.	This	allows	ASCII	characters	to	be	stored	as	a	single	byte	
(code	points	00‐7F),	with	multiple	bytes	used	for	higher	code	points.	UTF‐8	is	very	
efficient	 space	 wise	 where	 the	 text	 consists	 of	 mainly	 ASCII	 characters,	 and	 the	
World	Wide	Web	has	adopted	it	as	the	preferred	encoding	method	for	Unicode	code	
points.	Vitalware	3.0	also	uses	UTF‐8	as	 the	encoding	method.	Below,	we	show	a	
string	encoded	in	UTF‐32	with	a	space	between	each	code	point:	

豈 ↔ how?	

0000F900 00000020 00002194 00000020 00000068 0000006F 00000077
0000003F	

And	the	same	string	encoded	in	UTF‐8:	

EFA480 20 E28694 20 68 6F 77 3F	

As	you	can	see	the	UTF‐8	encoding	saves	considerable	space.	

Unicode

Unicode in Vitalware 3.0

5

Prior	 to	 Vitalware	 3.0	 either	 UTF‐8	 or	 ISO‐8859‐1	 could	 be	 configured	 as	 the	
encoding	used	by	Vitalware.	Vitalware	3.0	drops	support	for	ISO‐8859‐1	and	only	
supports	UTF‐8	encoded	characters.	The	change	means	that	moving	to	Vitalware	3.0	
requires	all	data	to	be	converted	from	ISO‐8859‐1	to	UTF‐8	before	the	system	may	
be	used.	The	upgrade	process	performs	this	important	function.	

	 Vitalware	3.0	will	not	allow	non	UTF‐8	sequences	 to	be	 input.	 If	 an	
illegal	 character	 is	 encountered,	 an	error	message	 is	displayed.	The	
enforcement	 of	 UTF‐8	 encoding	 means	 that	 all	 data	 entered	 into	
Vitalware,	 either	by	direct	entry	or	by	 importing,	must	be	 in	UTF‐8	
format.	Data	encoded	in	ISO‐8859‐1	cannot	be	loaded.	If	you	receive	
import	data	from	a	third	party	source,	ensure	that	it	is	in	UTF‐8	format	
otherwise	 errors	will	 be	 generated	 for	 all	 non‐ASCII	 characters.	 An	
ISO‐8859‐1	 encoded	 data	 file	 can	 be	 converted	 to	 UTF‐8	 using	 the	
UNIX	iconv	utility.	

Unicode

6

Unicode in Vitalware 3.0

Inputting	Unicode	Characters	
Now	that	we	understand	that	text	is	made	up	of	a	sequence	of	Unicode	code	points	
it	is	worth	considering	how	these	characters	can	be	entered	into	Vitalware.	 	

Vitalware	supports	two	mechanisms:	

 Escaped	code	point	
 Raw	characters	

Escaped	code	point	
The	escaped	code	point	mechanism	allows	an	escape	sequence	to	be	placed	in	a	text	
string	to	represent	a	Unicode	code	point.	When	the	string	is	sent	to	the	Vitalware	
server,	the	escape	sequence	is	converted	into	a	Unicode	code	point	encoded	in	UTF‐
8.	 	

For	example,	 if	 the	text	Fr\u{E9}deric	was	 input	while	creating	or	modifying	a	
record,	 the	data	saved	would	be	Fréderic.	The	 format	of	 the	escape	sequence	 is	
\u{x}	where	x	is	the	code	point	in	hexadecimal	of	the	Unicode	character	required.	
The	escape	sequence	may	also	be	used	when	entering	search	terms:	

	
The	 escape	 sequence	 may	 also	 be	 used	 in	 texql	 statements	 whenever	 a	 string	
constant	is	required.	For	example,	the	query	statement:	

select NamFirst
from eparties
where NamFirst contains 'Fr\u{E9}deric'

will	find	all	Parties	records	where	the	First	Name	is	Fréderic	(and	variations	where	
diacritics	 are	 ignored).	 The	 escape	 sequence	 format	 may	 also	 be	 used	 for	 data	
imported	into	Vitalware	via	the	Import	facility.	

Unicode

Unicode in Vitalware 3.0

7

	

Raw	characters	
The	 raw	character	method	 involves	pasting	Unicode	characters	 into	 the	 required	
Vitalware	 field.	There	are	 a	number	of	ways	of	 adding	Unicode	 characters	 to	 the	
Windows	clipboard.	One	way	is	to	use	the	Windows	Character	Map	application.	This	
can	be	found	on	a	Window	PC	by	selecting	search	on	the	Windows	Start	menu	(or	
pressing	the	Windows	Logo	key	and	the	letter	s	at	the	same	time)	and	searching	for	
charmap.	

The	Windows	Character	Map	application	allows	you	to	select	a	character	and	copy	it	
to	the	clipboard.	By	selecting	Advance	view,	it	is	possible	to	search	for	a	character	
by	name.	For	example	to	find	the	oe	ligature	character	(œ),	enter	oe ligature	in	
the	Search	for:	field	and	press	Search.	A	grid	of	all	matching	characters	is	displayed:	

	
Double‐click	 the	 required	character,	 then	press	Copy	 to	place	 it	on	 the	Windows	
clipboard.	The	character	can	then	be	pasted	into	Vitalware.	

Unicode

8

Unicode in Vitalware 3.0

Alternative	methods	
Another	way	to	add	a	Unicode	character	to	the	Windows	clipboard	is	to	use	a	website	
that	allows	Unicode	characters	to	be	searched	for	and	displayed.	Two	useful	sites	
are:	

 graphemica.com	(http://graphemica.com/)	
 unicode‐table.com	(http://unicode‐table.com/)	

With	both	of	these	sites	it	is	possible	to	search	for	a	character	by	name	or	code	point	
(in	hex),	e.g.:	

	
Highlight	the	character	on	the	page	and	copy	it	to	the	clipboard.	The	character	can	
then	be	pasted	into	the	required	Vitalware	field.	

Both	of	these	websites	display	the	code	point	for	the	character.	In	the	picture	above,	
the	code	point	for	œ	is	hex	153.	If	you	wanted	to	use	the	escaped	code	point	method,	
the	escape	sequence	to	use	would	be:	

\u{153}	

Unicode

Unicode in Vitalware 3.0

9

If	you	need	to	enter	certain	Unicode	characters	on	a	regular	basis,	you	could	create	
a	WordPad	 (or	Word)	 document	 that	 contains	 the	 characters.	When	 you	 need	 a	
character,	simply	copy	the	character	from	the	document	and	paste	it	into	Vitalware,	
without	the	need	to	search	for	the	character.	

Unicode

10

Unicode in Vitalware 3.0

Graphemes	
It	is	important	to	understand	that	what	we	think	of	as	a	character,	that	is	a	basic	unit	
of	writing,	may	not	be	represented	by	a	single	Unicode	code	point.	Instead,	that	basic	
unit	may	be	made	up	of	multiple	Unicode	code	points.	 	

For	example,	"g"	+	acute	accent	(ǵ)	is	a	user‐perceived	character	as	we	think	of	it	as	
a	single	character,	however	it	is	represented	by	two	Unicode	code	points	(67	301).	
A	user‐perceived	character,	which	consists	of	one	or	more	code	points,	is	known	as	a	
grapheme.	The	use	of	graphemes	is	important	for:	

 collation	(sorting);	
 regular	expressions;	
 indexing;	and	
 counting	character	positions	within	text.	

Vitalware	3.0	uses	graphemes	as	the	basic	building	block	for	text.	Thus	a	text	string	
is	handled	as	a	sequence	of	graphemes.	

A	grapheme	consists	of	one	or	more	base	code	points	followed	by	zero	or	more	zero	
width	code	points	and	zero	or	more	non‐spacing	mark	code	points.	In	the	case	of	"g"	
+	acute	accent	(ǵ),	the	letter	g	is	the	base	code	point	(67)	and	the	acute	accent	is	a	
non‐spacing	mark	 code	 point	 (301).	 The	 table	 below	 shows	 some	multiple	 code	
point	graphemes:	

Grapheme Code points

각	 1100	(ᄀ)	Hangul	choseong	kiyeok	(base	code	point)	

1161	(ᅡ)	Hangul	jungseong	a	(base	code	point)	

11A8	(ᄀ)	Hangul	jongseong	kiyeok	(base	code	point)	

	
64	(d)	Latin	small	letter	d	(base	code	point)	
325	(̥)	combining	ring	below	(non‐spacing	mark)	
301	(́)	combining	acute	accent	(non‐spacing	mark)	

á	 61	(a)	Latin	small	letter	a	(base	code	point)	
301	(́)	combining	acute	accent	(non‐spacing	mark)	

Some	 common	multiple	 code	point	 graphemes	have	been	 combined	 into	 a	 single	
code	point.	For	example,	the	last	entry	in	the	table	above,	á,	can	also	be	represented	
by	the	single	code	point	E1.	Hence	we	have	two	representations,	or	two	graphemes,	
that	represent	the	same	character	(á	is	this	case).	

Unicode

Unicode in Vitalware 3.0

11

Index	Terms	
An	 index	 term	 is	 the	 basic	 unit	 for	 searching.	 It	 is	 a	 sequence	 of	 one	 or	 more	
graphemes	that	can	be	found	in	a	search	but	for	which	searching	of	sub‐parts	is	not	
supported	(except	if	regular	expressions	are	used).	Vitalware	provides	word	based	
searching,	so	an	index	term	corresponds	to	a	word.	You	can	search	for	a	word,	and	
records	that	contain	that	word	will	be	matched.	In	languages	that	define	a	word	as	a	
sequence	 of	 letters	 separated	 by	 either	 spaces	 or	 punctuation,	 an	 index	 term	
corresponds	to	a	word.	In	languages	in	which	single	(or	sometimes	multiple)	letters	
make	up	a	word,	such	as	kanji,	an	index	term	corresponds	to	each	individual	letter.	
Vitalware	 3.0	 adds	 support	 for	 searching	 for	 punctuation,	 so	 each	 punctuation	
character	is	considered	to	be	an	index	term.	

Consider	the	following	text:	

香港 is Chinese for "Hong Kong" (香 = fragrant, 港 = harbour).	

The	index	terms	for	the	above	text	are:	

Index Term

香	

港	

is	

Chinese	

for	

"	

Hong	

Kong	

"	

(

香	

=	

fragrant	

,	

港	

=	

harbour	

)	

.	

Unicode

12

Unicode in Vitalware 3.0

Each	of	the	above	terms	can	be	used	in	a	search	and	the	query	will	be	able	to	use	the	
high	 speed	 indexes	 to	 locate	 the	 matching	 records.	 It	 is	 possible	 to	 use	 regular	
expression	characters	(e.g.	fra*	to	find	all	words	beginning	with	fra)	to	search	for	
sub‐parts	of	words,	however	 the	high	speed	 indexes	will	not	be	used	 in	 this	case	
(unless	partial	indexing	is	enabled).	

Each	 index	term	is	 folded	and	converted	 to	 its	base	 form.	The	 folding	process,	as	
described	in	the	overview	section	(page	1),	removes	case	significance	from	the	term.	
The	conversion	to	its	base	form	involves	removing	all	"mark"	code	points	from	the	
term	and	then	converting	the	remaining	code	points	to	their	compatible	 form	(as	
defined	by	 the	Unicode	8.0	 standard).	 The	 compatible	 form	 for	 a	 code	point	 is	 a	
mapping	from	the	current	code	point	to	a	base	character	that	has	the	same	meaning.	
For	example	the	code	point	for	subscript	5	(5)	has	a	compatible	code	point	of	5.	

The	table	below	shows	some	more	examples	for	compatibility:	

Type Compatibility Examples

Font	variants	
	

→	
→	

H	
H	

Positional	variants	 	ع
	ع
	ع
	ع

→	
→	
→	
→	

	ع
	ع
	ع
	ع

Circled	variants	 	 →	 1	

Width	variants	 ｶ	 →	 カ	

Rotated	variants	 ︷	
︸	

→	
→	

{	
}	

Superscripts	/	subscripts	 i9	
i9	

→	
→	

i9	
i9	

Unfortunately,	some	of	the	compatibility	mappings	in	the	Unicode	8.0	standard	are	
narrower	than	we	might	expect	when	searching	text.	For	example	the	oe	ligature	(œ)	
does	not	map	to	the	characters	"oe".	So	the	French	word	cœur	("heart")	does	not	
have	an	index	term	of	coeur,	but	remains	as	cœur.	When	searching	you	need	to	enter	
cœur	as	the	search	term	otherwise	cœur	will	not	be	found.	 	

In	order	 to	correct	 some	of	 the	 compatibility	mappings,	Vitalware	3.0	provides	 a	
mapping	 file	where	 a	 code	point	 can	be	mapped	 to	 its	 compatible	 code	point(s),	
hence	 "œ"	 can	 be	 mapped	 to	 "oe".	 The	 mapping	 file	 is	 located	 in	 the	 Texpress	
installation	directory	in	the	etc/unicode/base.map	file.	 	

A	sample	file	is	(as	distributed	currently):	

Unicode

Unicode in Vitalware 3.0

13

	

The following file is used to extend the Unicode NFKD mappings
for
characters not specified in the standard. The format of the file
is
a sequence of numbers as hex. Each number represents a single
code
point in UTF-32 format. The first code point is the code point
to map
and the second and subsequent code points are what it maps to.

00C6 0041 0045 # Latin capital letter AE -> A E
00E6 0061 0065 # Latin small letter ae -> a e
00D0 0044 # Latin capital letter Eth -> D
00F0 0064 # Latin small letter eth -> d
00D8 004F # Latin capital letter O with stroke -> O
00F8 006F # Latin small letter o with stroke -> o
00DE 0054 0068 # Latin capital letter Thorn -> Th
00FE 0074 0068 # Latin small letter thorn -> th
0110 0044 # Latin capital letter D with stroke -> D
0111 0064 # Latin small letter d with stroke -> d
0126 0048 # Latin capital letter H with stroke -> H
0127 0068 # Latin small letter h with stroke -> h
0131 0069 # Latin small letter dotless i -> i
0138 006B # Latin small letter kra -> k
0141 004C # Latin capital letter L with stroke -> L
0142 006C # Latin small letter l with stroke -> l
014A 004E # Latin capital letter Eng -> N
014B 006E # Latin small letter eng -> n
0152 004F 0045 # Latin capital ligature OE -> O E
0153 006F 0065 # Latin small ligature oe -> o e
0166 0054 # Latin capital letter T with stroke -> T
0167 0074 # Latin small letter t with stroke -> t

Compatible	mappings	may	be	added	to	the	file	as	required.	

	 If	the	file	is	modified,	a	complete	reindex	of	the	system	is	required	in	
order	for	the	new	mappings	to	be	used	to	calculate	the	index	terms.	

If	you	consider	the	French	phrase:	

Sacré-Cœur est situé à Paris.	

the	index	terms	after	folding	and	conversion	to	base	form	are:	

Index Term

sacre	

coeur	

est	

situe	

a	

paris	

.	

Unicode

14

Unicode in Vitalware 3.0

When	a	record	is	saved	in	Vitalware	all	index	terms	are	folded	and	converted	to	their	
base	form	before	indexing	occurs.	Similarly,	when	a	search	is	performed,	the	query	
terms	are	 folded	and	converted	to	 their	base	 form	before	 the	search	commences.	
Hence	a	search	for	"coeur"	or	"Cœur"	or	even	"COEUR"	will	still	match	the	text	in	the	
French	phrase	above.	

Searching

Unicode in Vitalware 3.0

15

Searching	
Now	that	we	understand	what	an	 index	term	is	we	can	talk	about	searching.	The	
incorporation	of	Unicode	 into	Vitalware	has	resulted	 in	the	searching	mechanism	
being	extended	to	handle	all	code	points	that	have	a	base	representation.	In	essence	
this	is	all	graphic	(page	3)	code	points	except	for	marks	and	spaces,	namely:	

 letters	
 numbers	
 punctuation	
 symbols	

The	inclusion	of	punctuation	as	an	index	term	means	that	punctuation	may	now	be	
included	in	searches	and	the	high	speed	indexes	will	be	used	to	locate	matches.	 	

An	 issue	 arises	 in	 Vitalware	 versions	 prior	 to	 3.0	 where	 certain	 punctuation	
characters	were	used	 to	 adjust	 the	 type	of	 searching	performed.	 For	 example,	 in	
Vitalware	2.5	a	search	for	@John	would	find	all	records	containing	words	that	sound	
like	John	(phonetic	searching).	Similarly	a	search	for	^joh*	would	match	records	
where	the	first	word	starts	with	the	letters	joh	(case	ignored).	A	search	for	=John	
would	locate	records	containing	John	with	case	significance	(that	is	an	upper	case	J	
and	 lower	 case	 ohn).	 Since	 Vitalware	 2.5	 and	 earlier	 removed	 punctuation	 and	
symbols	from	searching	(only	letters	and	numbers	were	supported)	there	was	no	
ambiguity	about	the	punctuation	associated	with	search	terms	(as	in	the	previous	
examples).	 As	 Vitalware	 3.0	 allows	 symbols	 and	 punctuation	 to	 be	 searched	 for,	
some	 ambiguity	 can	 creep	 in.	 For	 example,	 what	 does	 searching	 for	
fred@global.com	mean?	In	Vitalware	2.5	it	would	have	meant	finding:	

 "fred"	
 AND	the	phonetic	of	"global"	
 AND	"com"	

However,	in	Vitalware	3.0	is	the	@	character	to	be	treated	as	punctuation	or	does	it	
mean	the	phonetic	of	the	word	"global"?	 	

When	searching	for	a	word	prior	to	Vitalware	3.0	you	simply	entered	the	word	and	
performed	 the	 search.	 We	 have	 taken	 the	 same	 approach	 in	 Vitalware	 3.0	 with	
punctuation	characters.	In	other	words,	when	you	have	punctuation	in	a	search,	only	
records	containing	the	punctuation	are	matched.	Thus,	in	the	previous	example	the	
@	character	is	treated	as	punctuation	and	so	must	appear	in	matching	records.	 	

How	then	do	we	indicate	that	the	@	character	means	we	want	the	phonetic	version	
of	the	following	word?	We	proceed	the	character	with	a	special	marker	indicating	
the	character	is	to	take	on	its	phonetic	meaning.	The	marker	character	used	is	the	
backslash	(\)	character.	The	introduction	of	a	marker	character	to	alter	the	meaning	
of	 a	 character	 is	not	new	 in	Vitalware.	For	example,	\n	 can	be	used	 in	 strings	 to	

S E C T I O N 	 2 	

Searching

16

Unicode in Vitalware 3.0

represent	 the	 newline	 character;	 similarly	 \u{}	 is	 used	 to	 introduce	 the	 escape	
sequence	for	a	Unicode	code	point.	

Vitalware	3.0	has	a	simple	rule	to	determine	how	to	format	a	search:	

All graphic (page 3) characters, expect for spaces and marks, in a search
are matched as the character. Where the special meaning of a character
(e.g. @) is required, the character must be preceded by the backslash (\)
escape character. The only exception to this rule is that the backslash
character itself must be entered twice (\\) where the actual character is
required.

The	table	below	compares	some	searches	in	Vitalware	2.5	and	their	equivalent	in	
Vitalware	3.0:	

Find Vitalware 2.5 Vitalware 3.0

Records	containing	Fred	 fred	 fred	

Records	where	Fred	is	the	only	
word	in	the	field	

^fred$	 \^fred\$	

Records	that	contain	Fred	
phonetically	

@fred	 \@fred	

Records	containing	Fred	with	
matching	case	

=Fred	 \=Fred	

Records	containing	the	phrase	
Sacré-Cœur	

"sacré cœur"	 \"sacre-coeur\"	

Records	where	blue	and	sky	are	
within	five	index	terms	of	each	
other	

(blue sky) <= 5
words	

\(blue sky\) <=
5 words	

In	the	following	sections	we	will	look	at	all	available	special	search	operators	and	
show	examples	of	their	use	in	Vitalware	3.0.	Each	of	the	operators	is	displayed	with	
its	leading	escape	character,	the	backslash	character.	

Searching

Unicode in Vitalware 3.0

17

Transformations	
Transformations	 are	 an	 operator	 that	 is	 applied	 to	 a	 search	 term	 to	 alter	 its	
interpretation.	The	table	below	lists	all	valid	transformations:	

Transformation Description

\~	 Search	for	all	variations	of	a	word.	For	example,	searching	for	
\~elect	 will	 match	 elect,	 election,	 electing	 and	
elected,	but	not	electricity	(its	base	word	is	electric)	

\&	 Ignore	the	case	(upper	or	lower)	of	the	search	term.	This	is	the	
default	transformation	if	one	is	not	specified	explicitly.	

\@	 Use	phonetic	or	sounds	like	searching	for	the	specified	word.	

\=	 Perform	 the	 search	using	 case	 significance	 for	 the	 following	
word.	

\==	 Perform	 the	 search	 not	 only	 matching	 the	 case	 but	 also	
matching	any	marks	(diacritics).	

A	transformation	is	always	applied	to	a	word	and	is	placed	immediately	before	the	
word	to	which	it	applies.	Some	examples	are:	

Find Search

Records	containing	all	tenses	of	the	word	locate.	 	 \~locate	

Records	where	melbourne	is	all	in	lower	case.	 	 \=melbourne	

Records	 with	 Sacré	 and	 Cœur	 exactly	 as	 specified,	 that	 is	
matching	case	and	diacritics,	but	not	necessarily	next	to	each	
other.	

	 \==Sacré
\==Cœur	

Records	containing	words	similar	to	smythe	phonetically.	 	 \@smythe	

	

Searching

18

Unicode in Vitalware 3.0

Regular	Expressions	
Regular	expressions	provide	a	mechanism	for	searching	for	patterns	in	a	word.	With	
regular	expressions,	sub‐parts	of	a	word	may	be	matched.	In	general	the	high	speed	
indexes	 cannot	 be	 used	with	 regular	 expression	 searches.	 The	 only	 exception	 is	
trailing	regular	expressions	(that	 is	a	regular	expression	that	has	 leading	 letters),	
where	partial	indexing	has	been	enabled.	 	

Regular	 expressions	 can	 be	 intermixed	 with	 the	 \=	 and	 \==	 transformations	 to	
enforce	case	and	diacritic	significance.	 	

The	table	below	lists	all	valid	regular	expressions:	

Regular Expression Description

\?	 Matches	any	single	grapheme.	

*	 Matches	zero	or	more	graphemes.	

\[range\]	 Matches	only	one	of	a	sequence	of	graphemes	specified	in	range.
range	may	 consist	 of	 individual	 graphemes	or	 a	 beginning	and	
end	grapheme	may	be	specified	separated	by	a	minus	sign	(e.g.	
a-z).	

\{range\}	 Matches	 one	 or	more	 of	 a	 sequence	 of	 graphemes	 specified	 in	
range.	
range	may	 consist	 of	 individual	 graphemes	or	 a	 beginning	and	
end	grapheme	may	be	specified	separated	by	a	minus	sign	(e.g.	
0-9).	

Some	examples	are:	

Find Search

Records	containing	words	starting	with	abs.	 abs*	

Records	containing	Arabic	numbers.	 \{٩-٠\}	

Records	with	a	three	grapheme	word.	 \?\?\?	

Records	with	organisation	spelt	with	either	an	s	or	z.	 organi\[sz\]ation	

Records	with	at	least	one	word	containing	a	capital	S.	 \=*S*	

Records	containing	either	an	upper	case	or	lower	case	é.	 \==*\[éÉ\]*	

	

Searching

Unicode in Vitalware 3.0

19

Anchors	
Anchors	are	used	to	indicate	that	a	search	term	should	be	located	as	either	the	first	
or	 last	word	in	a	piece	of	text.	Anchors	can	be	used	in	combination	with	all	other	
types	of	search	operators,	namely	transformations,	regular	expressions,	phrases	and	
proximity.	 	

The	table	below	lists	all	valid	anchors:	

Anchors Description

\^	 The	search	term	following	must	be	the	first	word	in	the	text.	

\$	 The	search	term	following	must	be	the	last	word	in	the	text.	

Some	examples	are:	

Find Search

Records	that	have	text	ending	in	a	question	mark.	 	 ?\$	

Records	with	text	beginning	with	the	word	the.	 	 \^the	

Records	where	the	text	contains	only	the	word	Unknown.	 	 \^Unknown\$	

Records	with	text	where	the	first	word	starts	with	a	lower	
case	Latin	letter.	

	 \^\==\[a-z\]*	

	

Searching

20

Unicode in Vitalware 3.0

Proximity	
Proximity	 searching	 provides	 a	 mechanism	 for	 finding	 a	 list	 of	 words	 within	 a	
specified	distance	(either	words,	sentences	or	paragraphs).	Vitalware	supports	two	
types	of	proximity	searches:	

 The	first	is	phrase	searches	where	the	words	must	appear	next	to	each	other	and	
in	 the	 order	 they	 are	 specified.	 The	 words	 in	 a	 phrase	 search	 may	 have	
transformations,	regular	expressions	and	anchors	applied.	 	

 The	 second	 is	 a	 regular	 proximity	 search.	 Proximity	 searches	 may	 include	
transformations,	regulars	expressions,	anchors	and	phrases.	

The	table	below	lists	all	valid	proximity	operators:	

Proximity Description

\"search	terms\"	 The	 search	 terms	 enclosed	 within	 the	 phrase	
operator	(\")	must	appear	next	to	each	other	and	
in	the	order	they	are	specified.	

\(search	terms\) distance	 The	search	 terms	may	appear	 in	any	order	unless	
otherwise	 specified.	 The	 distance	 between	 the	
terms	indicates	the	range	within	which	the	search	
terms	must	appear.	The	syntax	for	distance	is:	
[ordered] relop number type	
where:	

 relop	 is	one	of	the	relational	operators	<,	
<=,	=,	>,	>=	

 number	is	the	distance	to	use	
 type	 is	 one	 of	 words,	 sentences	 or	

paragraphs	

The	 keyword	 ordered	 is	 optional,	 but	 if	 given,	
requires	 the	 search	 terms	 to	 be	 in	 the	 order	
specified.	

Some	examples	are:	

Find Search

Records	where	the	phrase	the black cat	
occurs.	

\"the black cat\"	

Records	 containing	 only	 the	 phrase	 Not
Applicable.	

\"\^Not Applicable\$\"	

Records	 where	 Fred	 occurs	 case	
significantly	 in	 the	 same	 sentence	 as	 the	
phonetic	 of	 Smith	 where	 Fred	 appears	
first.	

\(\=Fred \@Smith\) ordered =
1 sentence	

Searching

Unicode in Vitalware 3.0

21

Find Search

Records	 where	 the	 kanji	 character	 豈	
appear	within	 5	 characters	 of	 the	 phrase	
香	 港.	

\(豈 \"香 港\"\) <= 5 words	

	

Searching

22

Unicode in Vitalware 3.0

Conditionals	
Vitalware	 provides	 support	 for	 one	 conditional	 operator,	NOT.	 The	NOT	 operator	
reverses	the	sense	of	the	next	search	term.	The	NOT	operator	can	be	applied	to	any	
of	the	other	search	operators,	that	is	transformations,	regular	expressions,	anchors	
and	proximity.	 	

The	table	below	lists	the	valid	conditional	operator:	

Conditionals Description

\!	 The	sense	of	the	next	search	term	is	reserved.	

Some	examples	are:	

Find Search

Records	that	do	not	contain	the	kanji	 豈.	 \!豈	

Records	 that	contain	anything	apart	 from	
the	single	word	Unknown.	

\!\^Unknown\$	

Records	that	do	not	contain	the	phrase	Not
Applicable.	

\!\"Not Applicable\"	

Records	 containing	 the	 phrase	 Sacré
Cœur	 with	 case	 and	 diacritic	 significance	
but	not	Paris.	

\"\==Sacré \==Cœur\" \!Paris

	

Auto-phrasing

Unicode in Vitalware 3.0

23

Auto‐phrasing	
Unicode	 graphemes	 are	 broken	 down	 into	 one	 of	 three	 categories	 for	 use	 in	
Vitalware	3.0.	The	categories	are:	

Category Description

combining	 A	grapheme	that	is	a	simple	letter	or	number.	It	is	not	a	word	in	its	
own	right	but	requires	other	characters	to	form	words.	 	
Examples	are	the	Latin,	Arabic	and	Hebrew	letters	and	numbers.	

single	 A	single	grapheme	is	used	to	represent	a	base	word	or	meaning.	 	
Examples	are	Kanji	and	punctuation	characters.	

break	 A	character	that	delineates	words,	typically	a	space	character.	

Consider	the	following	text:	

香港 = "Hong Kong".	

The	graphemes	along	with	categories	are:	

Grapheme Category

香	 single	
港	 single	
	 break	
=	 single	
	 break	
"	 single	
H	 combining	

o	 combining	

n	 combining	

g	 combining	

	 break	

K	 combining	

o	 combining	

n	 combining	

g	 combining	

"	 single	

.	 single	

S E C T I O N 	 3 	

Auto-phrasing

24

Unicode in Vitalware 3.0

Vitalware	 uses	 the	 category	 to	 determine	 what	 is	 an	 index	 term.	 Each	 single	
grapheme	is	treated	as	a	separate	index	item,	while	combining	graphemes	are	joined	
together	 to	 form	 a	 "word"	 up	 to	 a	 break	 or	 single	 category	 grapheme.	 A	 break	
grapheme	is	not	an	index	term	and	is	discarded.	

In	 general,	 a	 phrase‐based	 search	 must	 be	 performed	 where	 you	 want	 to	 find	
records	where	a	list	of	index	terms	occur	sequentially.	For	example,	to	find	the	two	
kanji	characters	 香港	 (Hong	Kong)	next	to	each	other,	the	query	\"香 港\"	may	
be	 used.	 Where	 a	 grapheme	 is	 part	 of	 the	 single	 category	 (like	 the	 two	 kanji	
characters),	the	system	knows	what	the	index	term	is	and	is	able	to	treat	them	as	a	
phrase	 provided	 a	 break	 character	 is	 not	 found.	 In	 fact	 Vitalware	 3.0	 treats	 a	
combination	of	combining	and	single	graphemes	as	a	phrase	without	the	need	for	the	
phrase	operator	until	a	break	grapheme	is	encountered.	This	process	is	known	as	
auto‐phrasing.	

Auto‐phrasing	means	that	a	query	of	 香港	 is	equivalent	to	\"香	 港\"	without	the	
need	 to	 add	 the	 quotes	 or	 space.	 Another	 example	 is	 an	 email	 address	 such	 as	
fred@global.com.	 In	 this	case	 the	 index	 terms	fred,	@,	global,	.,	com	must	be	
located	 sequentially.	 Auto‐phrasing	 effectively	 allows	 you	 to	 enter	 non‐space	
separated	terms	and	Vitalware	will	retrieve	records	where	the	terms	are	adjacent.	If	
you	do	not	want	the	terms	to	appear	next	to	each	other,	for	example	if	you	want	to	
find	 香	 (fragrant)	 港	 (harbour),	 then	 simply	 placing	 a	 space	 between	 the	 two	
kanji	characters	will	disable	auto‐phrasing.	

Collation

Unicode in Vitalware 3.0

25

Collation	
Collation	 is	 the	 general	 term	 for	 the	 process	 of	 determining	 the	 sorting	 order	 of	
strings	of	characters.	Vitalware	3.0	uses	the	Default	Unicode	Collation	Element	Table	
(DUCET),	as	defined	in	the	Unicode	8.0	standard,	to	determine	how	text	should	be	
sorted.	DUCET	provides	a	locale	independent	mechanism	for	ordering	values.	

If	 you	 are	 interested	 in	 the	 ordering	used	by	DUCET,	 please	 consult	 the	Unicode	
Collation	Charts	(http://unicode.org/charts/collation/).	

S E C T I O N 	 4 	

Lookup Lists

Unicode in Vitalware 3.0

27

Lookup	Lists	
The	addition	of	support	 for	searching	on	punctuation	in	Vitalware	3.0	has	flowed	
through	to	other	parts	of	the	system.	The	most	notable	change	is	that	punctuation	is	
now	significant	in	Lookup	List	values.	 	

When	 comparing	 Lookup	 List	 entries	 prior	 to	 Vitalware	 3.0,	 punctuation	 was	
removed	before	the	entries	were	processed.	Hence	a	Lookup	List	entry	of	Smith (?)	
was	treated	the	same	as	an	entry	for	Smith,	so	only	one	value	(the	first	one	entered	
in	 the	 system)	would	 be	 stored.	 The	 problem	 is	 that	 these	 two	 entries	 are	 very	
different	in	meaning.	The	first	implies	a	level	of	uncertainty	with	the	name	which	is	
not	present	in	the	second.	

Vitalware	3.0	retains	punctuation	when	comparing	Lookup	List	values,	meaning	that	
the	 two	 entries	 in	 our	 example	 are	 treated	 as	 separate	 and	we	 end	up	with	 two	
entries	in	the	Lookup	List	itself.	

S E C T I O N 	 5 	

Index	

A

Alternative methods • 8

Anchors • 19

Auto-phrasing • 23

C

Code Points • 3, 15, 16

Collation • 25

Conditionals • 22

E
Escaped code point • 6

G

Graphemes • 10

I
Index Terms • 11

Inputting Unicode Characters • 6

L
Lookup Lists • 27

P
Proximity • 20

R

Raw characters • 7

Regular Expressions • 18

S
Searching • 15

T
Transformations • 17

U

Unicode • 1, 12

