

Copyright © 2009 KE Software Pty Ltd
This work is copyright and may not be reproduced except

in accordance with the provisions of the Copyright Act

Vitalware Documentation

Release Notes: Vitalware 2.1.01
Document Version 1

Vitalware Version 2.1

 3

Contents

Here you will find collected together the Release Notes for Vitalware 2.1.01, alongside all
documents referenced in the notes. These release notes and documents are also available on
the KE Vitalware website.

This PDF document brings together a number of individually published documents: please
note that page numbering below refers to this combined PDF document and not to the page
numbers printed at the bottom of pages, as each individual document, e.g. Record Recall, has
its own internal numbering:

Release Notes: Vitalware 2.1.01 5
Statistics documentation 24
Record Recall 63
Record Templates 73
XSLT processing of XML import files 105
FIFO Server 118
KE Vitalware Configuration 137
Range Indexing 169

http://www.kesoftware.com/index.php?option=com_content&task=view&id=1165&Itemid=238

 5

Release Notes: Vitalware 2.1.01
Release Date: 24 July 2009

Requirements
• For Windows 2000, XP, 2003, Microsoft Windows Services for UNIX (version 3.5)
• KE Texpress 8.1.020 or later
• KE TexAPI 3.1.016 or later
• Perl 5.8 or later

Updates / New Features
• Statistics Module: A facility has been added that allows statistical information to be

gathered and stored at regular intervals. The information is maintained in a new
module called Statistics. Tasks are executed on the Vitalware server to populate
Statistics records with a numeric value. The resulting records may be used to produce
numeric and graphical reports. Statistical data may be generated:

• hourly
• daily
• weekly
• monthly
• at user defined periods (e.g. fortnightly, annually, etc.)

Statistical data may also be added manually, if required. The image below shows the
structure of a Statistics record:

A sample report is shown below:

http://www.microsoft.com/technet/interopmigration/unix/sfu/default.mspx
http://www.mel.kesoftware.com/index.php?option=com_content&task=view&id=1101&Itemid=627
http://www.mel.kesoftware.com/index.php?option=com_content&task=view&id=451&Itemid=235
http://www.perl.org/

System Administrators may add new tasks to generate site specific statistics.

A complete description of the new module and periodic tasks can be found in the
Statistics module documentation.

• Record Recall: The addition of record level auditing in Vitalware 2.0.03 provided the
possibility for restoring records to previous versions. A new facility has been added
that allows a record to be restored to the values it contained at a specified date and
time. A batch command allows a set of records to be reset. Users require the daRecall
operational privilege to be able to use the facility. The images below show the new
commands:

 6

http://www.kesoftware.com/index.php?option=com_content&task=view&id=555&Itemid=238

A complete description of the new facility can be found in the Record Recall
documentation.

• Record Templates: The new Record Templates facility allows an existing record to
be used as the basis for producing one or more new records. A wizard is provided to
streamline the record creation process. A number of features are available:

• Data from the existing record may be copied into the new records
• Static values may be added to the new records
• Users may be prompted for values that are added to the new records

 7

• Starting values for incrementing fields may be supplied, along with an
incrementation value

• Variable data may be added to the new records (e.g. record creation number)
• Blocks of IRNs may be preserved

The Record Template facility allows a number of duplicates to be made of an existing
record. It provides a useful means for reserving a block of numbers (e.g. Registration
Numbers, Stock Numbers, IRNs, etc.) that will be completed at a later date.

A complete description of the new facility can be found in the Record Templates
documentation.

• Import XSLT Processing: The Import facility has been extended to allow XSLT pre-
processing before XML data is imported into Vitalware. A series of pre-configured
templates may be used or users may define their own templates. The Import wizard
has been extended to allow templates to be tested before importing data. A complete
description of the extension may be found in the XSLT Processing documentation.

 8

• FIFO Service: A generic framework has been added to the Vitalware server allowing
complex calculations to be performed with the results used to populate data values.
The framework removes the old system() scheme leading to significant improvements
in speed and flexibility. A series of plugins is used to perform the calculations. The
new service is used for:

o calculating turn-around times for product insurance
o determining multi-lingual values for system settings

A complete description of the new server can be found in the FIFO Server
documentation.

• Multimedia Upgrade: Replacement of the old multimedia components with new
versions is complete. All controls where media is attached and viewed now use the
same sub-system. The new sub-system provides support for a large selection of audio,
video and image formats. In particular improved support is available for the following
formats:

• AV
• MPEG
• WMV
• MP3

• Multimedia Drag and Drop: A multimedia file (image, audio, video, documents,
etc.) or URL may be dragged from the Windows environment and dropped on any
control displaying multimedia. A new Multimedia record is created for the dropped
item with the resulting record attached automatically to the control. Allowing
multimedia to be added via drag and drop may streamline the data entry process,
however the Multimedia record created will only contain minimal data (default values,
extracted metadata, generated resolutions, etc.). If extra data exists, the multimedia
record may need to be updated manually.

 9

http://www.imagemagick.org/script/formats.php

• System Tuning: New tools are available to provide more optimal indexes for
searching. In general, the Vitalware server will configure itself to provide near optimal
searching performance for most data sets. The new tools allow fine-tuning of the
indexes to provide even faster retrieval and to minimise the amount of storage
required. System Administrators may configure the system manually to achieve
optimal performance for irregular data sets. A complete description of the new tools
may be found in the Configuration and Range Indexing documentation.
Note that System Tuning requires Texpress 8.2.

• XSLT Report Viewer: The XSLT Report viewer has been rewritten. The previous
version wrapped the generated XML with a stylesheet processing instruction,
requiring the browser to perform the transformation from XML to HTML. Since web
browsers provide different implementations of the XSL standard, the generated
HTML may vary from browser to browser, resulting possibly in erroneous views. The
new version of the viewer performs the transformations internally (rather than using
the browser) using the MSXML engine. Page consistency is guaranteed, regardless of
the browser employed, as a single engine is used.

• Image Resolution: A new Registry entry has been added that allows the resolution
(dots per inch / cm) and resolution unit (inch / cm) to be defined for derived images.
Using this entry, derived images can be altered to contain a resolution suitable for
embedding directly in Crystal reports via their OLE Graphic object. The format of the
new Registry entries is:

System|Setting|Multimedia|Metadata|Set|Property|format|Re
solution| x:y
System|Setting|Multimedia|Metadata|Set|Property|format|Re
solution Unit|unit

where:
format is the image format for which derived images will have the resolution set. A
value of Default may be used to indicate the resolution should be set for all derived
images. Individual image formats may also have an image width and height specified
to further restrict the setting of the resolution. For example, a format of
90:100:JPG would indicate that only 90 x 100 (width x height) pixel JPEG images
should have the resolution set.
x:y specifies the resolution (width:height) to place in the derived image. The
resolution unit is defined by the second Registry entry where the following values are
available for unit:

0 - Clear any existing resolution
1 - Resolution unit is DPI (dots per inch)
2 - Resolution unit is DPCM (dots per centimetre)

• Media Thumbnails: The thumbnails displayed where multimedia is embedded in a
tab have been upgraded to provide consistent colouring and detail. The image below
shows some of the new thumbnails:

 10

• Crystal Viewer Upgrade: The Crystal Reports viewer has been upgraded to Crystal
Reports XI Release 2. A number of Crystal Reports issues have been resolved in the
latest version. Support for French, German, Italian, Spanish and Swedish is available
in the new viewer. To install the new viewer a Standalone or Network Client
installation is required on all user computers.

• User identification: The status bar, located at the bottom of each module, now
includes the user name of the person logged in and the service (port number) to which
they are connected. The information provides an easy way to determine the EMu
server to which you are connected, particularly if you are logged in more than once:

• Image Quality: The Registry entry used to determine what resolutions are derived
when an image is added to the Multimedia repository has been extended to allow the
image quality to be defined. The quality is used by lossy formats (e.g. JPEG) to
determine the level of image loss tolerated. The value is between 1 and 100, where 1
indicates a complete loss of quality and 100 represents no loss of quality. The format
of the Registry entry is:

System|Setting|Multimedia|Resolutions|format|Resolution|
resolution;...

where resolution consists of up to six colon separated values:

• image width in pixels
• image height in pixels
• image type (e.g. JPEG, TIFF, etc.)
• scale image, that is maintain aspect ratio when resizing (TRUE or

FALSE) [default: TRUE]
• enlarge image, that is allow derivative to exceed size of original image

(TRUE or FALSE) [default: TRUE]

 11

• compression to apply (e.g. NONE, FAX3) [default: NONE]
• image quality (value between 1 and 100) [default: 100]

• Copy Special: A Copy Special command has been added under the Edit menu to
allow the end of line (used within text to end a paragraph) and end of row (used
between records) delimiters to be defined. The delimiters to use may vary depending
on the application into which records are being pasted. The image below shows the
delimiters available:

• Groups Module: The Groups module has been extended. A number of new tabs have
been added:

• Tasks
• Multimedia
• Notes
• Legacy Data

Three new fields have also been added:

• Group Purpose
• Group Description
• Group Status

 12

The new fields and tabs allow full documentation of a group, rather than just recording
the group name.

• Font Setting: A new option allows the font used to display data to be set. The option
is useful for LCD screens where the standard Windows font may be difficult to view.
The image below shows the new Font tab option:

The default font has changed from MS Sans Serif to Microsoft Sans Serif.

• Security Extension: The Security Registry entry has been expanded to allow the
name of the user to be embedded in security values. The variable $user will be

 13

replaced with the user name of the person running EMu. Using this variable, security
may be adjusted on a per user basis depending on the user name stored in the data. The
entry below grants editing privileges based on the user name stored in the
AdmTrustedUser column in the Catalogue module:

Group|Default|Table|ecatalogue|Security|Edit|AdmTrustedUs
er=$user

• Exact Lookup Match: A new Registry entry has been created requiring that Lookup
List values must match exactly against values entered, that is, the character case and
punctuation must be the same as the Lookup List entry. The format of the Registry
entry is:

Group|group|Table|table|Lookup Exact|colname|true

where colname is the name of the column for which Lookup List entries must
match exactly the value entered.

• Improved Media Download: The mechanism used to transfer media files from the
EMu server to the client machine has been replaced with a more efficient protocol.
The new mechanism has resulted in download time improvements of between 300%
and 700%.

• Multimedia re-arrangement: Significant speed improvements have been made when
re-arranging attached multimedia. The improvement is significant if a large number of
multimedia attachments exist.

• Image Display: The Image Display Registry has been extended to allow testing for
empty and filled fields. The new Registry entries are:

Group|group|Table|table|Image Display|colname|NULL|image
Group|group|Table|table|Image Display|colname|NOT
NULL|image

where NULL matches an empty field and NOT NULL matches a filled field.

• Barcode Stock functionality: Management of Security Stock (from creation of stock
records through to distribution, return, etc. of Security stock) can be managed using a
Barcode Scanner.

• Receipt Printer: Added ability to use more than one type of receipt printer. Where
additional receipt printer types are used they are specified using the Receipt
Printer Name Registry entry. The format of the entry is:
Group|Default|Table|epos|Receipt Printer Name|Name
where Name is the name that Windows uses to refer to the printer.

• A facility was added to retire products in the Products database that are no longer
offered to customers but appear on historic records. This is done by setting the Status
field to Retired.

• Added check so that records which are restricted from printing cannot be attached to
certificate orders.

• Altered processing of the removal of an attached event for a certificate so that if a
certificate had been printed, the removal of the event requires supervisor authorisation.

• Added the ability to reset all link grids to the top left position when inserting a new
record. This functionality is controlled by the Reset LinkGrids Registry entry.
The format of the entry is:
Group|Default|Table|Default|Reset LinkGrids|boolean
where boolean is True (the cursor will move to the top left of a link grid when a user

 14

enters Insert / New mode) or False (the cursor will remain in the same position in a
link grid when a user enters Insert/ New mode).

 15

Issues Resolved

Issue Resolution
• The Audit facility introduced in the previous

release requires each record created to have
a unique IRN (Internal Record Number). If a
record is deleted, the number should not be
re-used, otherwise audit trail data for the
new record may display information about a
deleted record.

The default value for autokeyreuse has
changed from yes to no. The change
guarantees IRNs are never re-used,
ensuring audit trails refer to the current
record only.

• The error message Column operation
performed before row has been accessed
may appear after sorting a matching set of
records or retrieving a set of records via the
Groups facility. After the error is shown, the
data for the matching records may be blank
(although the record count is correct).

The error no longer appears and the
records are displayed correctly.

• If the Security tab is resized the Add and
Remove buttons may not be positioned
correctly after the tab layout is adjusted.

The Add and Remove buttons are now
positioned correctly.

• A number of controls on query tabs do not
allow multiple values to be entered, hence
restricting OR based queries to additional
searches.

All query controls now allow multiple
values to be entered, enabling alternative
terms to be entered in the same search.

• An invalid number format or Invalid
query specified error is shown if a value
greater than 2,147,483,648 is entered into a
numeric (integer) field.

The maximum allowable value for a
numeric field has been increased to
9,999,999,999.

• An Access Violation error may occur when
extracting XMP metadata where multiple
RDF xmlns attributes are defined.

Multiple xmlns attributes are now
handled correctly.

• If many columns are defined for viewing via
Shortcuts, moving between records may be
slow, even if Shortcuts are disabled. The
columns are loaded from the Vitalware
server regardless of whether Shortcuts are
displayed.

When Shortcuts are disabled, the
columns are no longer fetched from the
Vitalware server. The change results in
faster movement between records.

• An Access Violation error may occur in the
Multimedia repository for audio, video and
document based media where the
Documents table is empty. Under normal
operation the table always contains the
master media entry; however if data is

An error is no longer displayed if the
Documents table is empty.

 16

loaded from external sources, the table may
be empty.

• An Access Violation error may occur when
moving through records where a read-only
grid changes from having no entries to
having one entry.

An error is no longer displayed where a
read-only grid changes from having no
entries to having one entry.

• If controls have been removed from a tab (as
a result of sub-classing), the remaining
controls may not be laid out correctly when
the tab is resized.

The controls in sub-classed tabs, when
resized, are laid out correctly.

• Under rare circumstances it is possible to
have the same IRN assigned to two different
records. The sequence of events required to
produce the error involves a complex
interaction between a series of users.

This sequence of events no longer causes
an error.

• An End of File error may be produced when
performing a search and displaying matches
in either List or Contact Sheet mode. The
error is displayed only if the results contain
a "false" match.

"False" matches are handled correctly in
List and Contact Sheet modes.

• An image in a report may not be displayed if
the file name contains an ampersand (&)
character.

The image is displayed correctly if the
file name contains an ampersand.

• Some multimedia helper applications may
not start correctly when Launch Viewer is
selected. Older Windows based programs
may not accept the slash character as a valid
path separator (e.g. MS Excel).

All paths to multimedia files are now
translated to "old" Windows based paths
(using the back slash character) before
launching the associated viewer.

• An Access Violation error may display
when using drag and drop to re-arrange the
order of a large number of multimedia
attachments.

The error message no longer appears
when re-arranging multimedia
attachments.

• The Undo command may not rewind
changes made to the order of multimedia
attachments. An incorrect order may result
where a large number of multimedia
attachments exists.

The Undo command resets the order of
multimedia attachments correctly.

• The Vitalware help file does not load
correctly under Windows Vista. Microsoft
has modified the mechanism used to load

The Vitalware help file now loads
correctly under all versions of Windows.

 17

help files under Vista.

• The Summary Data may not be displayed in
bold when moving between records under
some circumstances.

The Summary Data is always displayed
in bold.

• A module may be created off the viewable
screen area if the Save Last Position option
is enabled and the viewable size of the
monitor is reduced (either by moving from
dual monitors to a single monitor or moving
from a large monitor to a smaller monitor).
As the new module cannot be seen it may be
difficult to move it to a viewable area.

All modules are now created within the
viewable area of the monitor regardless
of the Save Last Position setting.

• When re-attaching media to an existing
Multimedia record the original version of
the media may not be removed correctly
where multiple storage areas exist on the
Vitalware server (as defined by the
ServerMediaPath Registry setting).

Previous versions of media are cleaned
up correctly when multiple storage areas
are specified.

• The Paste and Paste (Insert) commands are
not enabled when the clipboard contains
some invalid data for pasting into grids. A
better solution is to allow valid values to be
pasted with an error displayed for invalid
values.

The Paste and Paste (Insert) commands
are now enabled even if invalid values
are part of the clipboard data.

• A report consisting of image and non-image
based multimedia within the same record,
where a resolution has been specified for the
images, may not display the images.

The images are now displayed correctly
for reports where the record contains
image and non-image based multimedia.

• The layout of controls on a tab may not be
correct if a new module is opened and the
Save Last Position and Save Last Size
options are enabled and the module is
maximised.

The controls are laid out correctly if a
new module is opened and maximised.

• The time required to save a new record may
be increased if another instance of the same
module is open and a large number of
matching records are displayed.

The time taken to insert a new record is
not lengthened if another instance of the
module is open.

• Incorrect data may be displayed when
performing a spell check on a text field that
is part of a nested form. The data displayed
is for another row in the form, rather than

The correct data is displayed when
performing a spell check in a nested
form.

 18

the row with the bad term.

• Only the first row of a multiple row Paste or
Paste (Insert) may be added to a grid if
multiple rows are extracted from the same
attachment module.

All rows are pasted correctly where
multiple columns are extracted from the
same attachment module.

• The metadata values (EXIF, IPTC, XMP)
are copied into a new record when Ditto All
is selected.

The metadata values are no longer
copied when Ditto All is selected.

• The What's this Help? dialogue contains
information about the control selected. It
would be useful if the information could be
copied and added to the clipboard for use by
other applications.

The field help information may be
selected and copied to the clipboard.

• The resizing of CMYK images may result in
the C (Cyan), M (Magenta) and Y (Yellow)
planes being resized correctly, however the
K (black) plane may not be resized, causing
a distortion in the final image.

CMYK images are resized correctly.

• The Audit facility does not handle back
slash characters correctly. The character is
removed from audit trail data.

Back slash characters are handled
correctly and kept in audit trail data.

• The tabs located at the bottom of the module
window may become disproportionately
large when the Windows Big Font feature is
enabled.

The tabs increase size in proportion to
the rest of the module.

• The Attach Media button on the Multimedia
tab may be disabled the first time the tab is
visited, even if media could be attached.

The Attach Media button is enabled if
media may be attached when the
Multimedia tab is first visited.

• A Primary Key is not assigned error may
appear when completing one insertion and
starting the next if the New Record
command is entered before the saving of the
previous record has completed.

A new insertion cannot commence
before the saving of the previous record
is complete.

• The Date Modified and Time Modified
fields are not updated when a record is
changed in the Field Help module.

The Date Modified and Time Modified
fields are updated when the record is
saved.

• The ownership of created reports may not be
correct if a Registry entry exists for a report
without a title (the entry can only be entered

The ownership of created reports is
correct even if a bad Reports Registry
entry exists.

 19

• A report containing images may not adhere
to the report resolution settings when the
reporting module is not the Multimedia
module. The master image may be used
rather than the resolution specified.

The correct image resolution is used.

• An Admin Task may not stop executing
when the Abort button is clicked.

The Admin Task is terminated when the
Abort button is clicked.

• The Audit facility does not generate the
correct column name for double nested grids
of latitude, longitude, date and time
columns.

The correct column name is generated.
The upgrade process to Vitalware 4.0.01
corrects any bad column names.

• The Audit facility may add redundant empty
values to audit records where a column
computes to an empty value.

Empty values are not added to audit
records. The upgrade process to
Vitalware 4.0.01 removes any redundant
empty values.

• The Audit facility may place the client
specific catalogue name as the table name in
audit records, rather than the generic
ecatalogue table.

The generic ecatalogue table name
appears in all catalogue audit records.

• The Program field in the Audit module may
display the time value rather than the
program name.

The program name is shown in the
Program field.

• The column widths configured for List View
mode may not be preserved correctly if the
total width of all columns exceeds the width
of the module.

The column widths are preserved
correctly.

• An incorrect attachment query may be
generated from Search mode if a grid control
already contains attachments which are
cleared after which the attachment button is
clicked.

The attachment query is no longer
generated if the grid has been cleared.

• An incorrect query may be generated where
two or more query controls contain
attachment queries (that is records have been
attached to query control). An OR based
query is generated rather than the required
AND query.

The correct query is generated where
multiple controls contain attachment
queries.

• The Update Resource command in the
Multimedia module may truncate IPTC
metadata where the metadata contains a null

All null characters are removed from
IPTC data when the metadata is
extracted. A null character is not valid

 20

character (that is, a non-existent character at
code point zero).

under the IPTC standard.

• A module may start with the maximum
screen size, but without the maximise button
enabled if the Save Last Size option is
selected and the module was last closed
when maximised.

The module starts maximised with the
button enabled.

• The values in calculated fields may not
display correctly if a non-standard colour is
set for calculated data.

Calculated values display correctly, even
when a non-standard colour is used.

• An Index out of bounds error may be
displayed if rows in a grid are deleted from
the top down while in Query mode.

The error message no longer appears.

• An Access Violation error may appear if the
Abort button is clicked when sorting
records where a summary is requested.

The error message no longer appears.

• An Access Violation error may appear when
right clicking an image thumbnail and
viewing the Launch Viewer sub-menu.

The error message no longer appears.

• The Audit Trails and Groups modules may
not display module specific documentation
when help is requested.

Module specific help is displayed.

• It was possible for a certificate to print even
though payment for it was pending.

The certificate is no longer printed.

• When changing the status of an order it was
possible to receive an Index out of range
error.

The status may now be changed without
error.

• When inserting a POS transaction it was
possible for the date and time inserted values
to be incorrect.

The date and time values are now
correct.

• When printing the cheque run it was
possible to use the same cheque number
more than once.

Cheque numbers cannot be re-used.

• On occasions the applicant and refund
details did not auto-populate from the
delivery details.

The applicant and refund details are now
populated.

• When rolling back ledger records due to The refund ledger record is now rolled

 21

failure to save a POS transaction, a refund
ledger record may not have been rolled
back.

back.

• When an invoice was paid the Till menu
state still reflected that no Till was signed
on.

The Till menu state shows the Till as
signed on.

• When a Cannot focus disabled window
message was displayed as a result of failing
to save a POS record, record roll back was
not performed.

Record roll back is now performed.

• When resizing the POS module the payment
group boxes did not resize.

The payment group boxes resize.

• On rare occasions an empty ledger record
could be inserted.

Empty ledger records are no longer
inserted.

• On occasions when delivery details were
dragged and dropped from Parties, other
changes on the POS transaction could be
lost.

All changes are correctly retained.

• On rare occasions when selecting the reprint
menu options an additional ledger record
could be created.

Additional ledger records are no longer
created.

• After a lookup table error it was possible for
an under-payments ledger record to be
created instead of a refund.

A refund ledger record is now created.

• A product was indicated as not valid for
reversal after its name had recently been
changed.

Check for validity was altered from
product name to product code to cater
for product name changes.

• When back filling was turned on and
multiple search columns were in use, on
occasions the back fill of a field would be
empty.

The back filling code now checks all
columns to try to find a value for use in
the field.

• When back filling from a column that was a
nested table, the back filled details could
overwrite values in other rows in the POS
record.

No other values are overwritten.

• After making a change to the status on the
Sales tab and then swapping to the Single
Sale tab, the changed status was not

The status is correctly updated on the
Single Sales tab.

 22

 23

reflected.

• When transmitting records from one
Vitalware environment to another, the same
record could be transmitted more than once.

The record is only transmitted once.

• When printing certificates, the same
certificates could be printed more times than
was ordered.

The certificate is only printed the
number of times it is ordered.

• When module caching was being used, after
viewing a record's history, a user's module
permissions may no longer have been
correct.

The user's module permissions are now
correct.

• Some registration menu options which
require edit privilege would be shown as
enabled even though a user did not have edit
permission.

The registration menu options are
disabled when a user does not have edit
permission.

• When adding a user note to a record that was
already being edited, the client application
would hang.

An error message is now displayed
indicating that the record is being edited.

• When double keying a richedit box that
spanned multiple lines, the comparison
function could at times fail even though the
two values were the same.

The comparison function correctly
identifies the two keyings as the same.

• When double keying a record and a value
was entered for the second keying where no
value was entered for the first, an access
violation could be shown.

The access violation no longer appears.

Copyright © 2009 KE Software Pty Ltd
This work is copyright and may not be reproduced except

in accordance with the provisions of the Copyright Act

Vitalware Documentation

Statistics
Document Version 1.0

Vitalware Version 2.1

Statistics i

7

12
14

Contents
S E C T I O N 1 Statistics Facility 3

Overview 3
Statistics Module 4

Reporting
Periodic Tasks 11

vwperiodic
Tasks
Creating a new period 19
Regenerate missing data 20

S E C T I O N 2 Appendix A - KE::Statistics perl module 21
Name 21
Synopsis 22
Description 23

KE::Statistics::Session 24
Methods 25

KE::Statistics::ResultSet 27
Methods 28

KE::Statistics::Date 29
Methods 30

KE::Statistics::Statistics 33
Methods 34

Bugs 36
See Also 37

 Statistics

Statistics 3

S E C T I O N 1

Statistics Facility

Overview
As institutions continue with their Vitalware implementations, the question of
statistical analysis of system operations and data content inevitably arises. System
administrators and managers require reports showing the number and type of
operations performed on a per user basis, e.g. the number of insertions into the
Catalogue module on a daily basis for the past month listed by user. The answer to
this request is found in the records in the Audit module. In order to produce the
information in a reportable format it is necessary to perform a number of searches
of the Audit information and collate the results into a spreadsheet, which can then
be graphed or tabulated. The process may be quite time consuming and tedious,
and if the same information is required again at a future date, the same steps need
to be repeated to get the same results.

Vitalware 2.1.01 introduces a Statistics facility that allows statistical information
to be generated on a regular basis (hourly, daily, weekly or monthly) and stored in
the Statistics module for later use. System administrators and managers need only
search the Statistics module to locate the information they require and then
produce a report (Excel Pivot table) from which tables and graphs may be
generated.

The Statistics facility consists of two parts:

• Statistics Module
The Statistics module contains records with computed statistical values. Each
record contains one value, a floating point number, that represents the result
of a statistical criteria. For example, a value of 10 may indicate the number of
records inserted by user james into the Births module on 17 February 2009.
A standard Vitalware module interface is provided to the Statistics module.
An Excel report is supplied that presents the records in a Pivot table for
further manipulation.

• Periodic Tasks
In order to provide useful statistical information it is necessary to have
statistic records generated at regular intervals, removing the need for
information to be obtained manually. The Periodic Tasks facility implements
a framework in which individual tasks (scripts) can be placed and executed on
a regular basis. It is the purpose of the tasks to generate statistical records by
examining the various system reports and data within a Vitalware
implementation. Periodic tasks can be run on an hourly, daily, weekly or
monthly basis. It is possible to add new periods (e.g. fortnightly) if required.

Statistics Facility Statistics Module

4 Statistics

Statistics Module
Vitalware 2.1.01 sees the addition of the Statistics module. Designed to hold
statistical data, the module stores one statistical value per record. The value is
computed by a task, which is charged with creating the record. Administrators can
search the module to retrieve sequences of records used to produce reports.

The module consists of a Statistics tab that contains all the information about the
statistical data. The other tabs are:

• Security - controls access to the data.
• Audit - lists auditable operations performed on the record.
• Admin - contains record creation and modification dates/times.

The Statistics tab stores three discrete pieces of information:

• Keys and Value
The Keys describe the type of statistical value stored in the record. A record
consists of a number of hierarchical keys in which each level defines a
variable piece of information for the statistic generated. The top level is
reserved for the type of record. In the image above the first Key has a value of
Number of Records By Table (daily). Three pieces of information are
contained within the title:
i. The Value of the record is a record count (Number of Records).
ii. The record count is generated on a per table basis (by Table).
iii. The Value is generated daily (daily).
The second Key (ebirths) indicates the table for which the record count
applies. Thus, the record above contains the number of records in the ebirths
table generated daily. In general, the title of the record should use the word by
to indicate what variables are contained within the record. For example, a title

Statistics Module Statistics Facility

Statistics 5

of Audit Statistics by Operation by Module by User (daily) would
indicate that the record contains a count of the number of audit operations
(insertions, edits, deletions, etc.) on a per table basis for each individual user.
The Value represents the number of operations on a daily basis. Given this
title, Key 2 would contain the audit operation type, Key 3 the table name and
Key 4 the user name.
The Value is a floating point number containing the numeric value defined by
the Keys. In most instances the Value is an integer, however if averages are
computed, the fractional part may be required.

• Dates
Three dates are provided: depending on the period of the statistical record,
some or all of them may be filled:
• Exact - filled for data that is gathered within a single day (daily and

hourly).
• From - the commencement date for the period. A commencement date

should always be supplied.
• To - the completion date for the period. A completion date should always

be supplied. If the period is a day or less, the commencement and
completion dates are the same as the Exact date.

The date fields are used to define the day or range of days covered by the
statistical value. The values are very useful when performing searches to
gather statistical information for reporting.

Statistics Facility Statistics Module

6 Statistics

• Times
Three times are provided: depending on the period of the statistical record,
some or all of them may be filled:
• Exact - filled for data that is gathered at a single point in time. Some

hourly records represent a value at a fixed point in time, e.g. the number
of users accessing the system. As this value represents the count at a fixed
point in time, the Exact time field should be filled.

• From - the commencement time for the period. A commencement time
should be supplied for tasks that are within a day (e.g. hourly).

• To - the completion time for the period. A completion time should be
supplied for tasks that are within a day.

The time fields are used to define the point in time or range of time covered
by the statistical value. If the value period is a day or longer, the time fields
should be left empty. The values are very useful when performing searches to
gather statistical information for reporting.

Statistics Module Statistics Facility

Statistics 7

Reporting
The main reason for gathering statistical information is to produce reports. Reports
may be tables of data, or more graphical representations such as charts may be
used. The Statistics module provides one report only, the Excel based Statistics
Pivot Table report. Before we can produce a report, it is necessary to retrieve the
data on which to report. The steps below outline the process required to produce a
statistical report:

1. Open the Statistics module by selecting the Statistics
button in the Command Centre.

2. Select the Lookup List button for Key 1. A list of all the statistical data
maintained by the system is displayed:

3. Select the entry for the report type to be produced, e.g. Logins by User
(monthly).

4. If reporting on a single user or list of users as opposed to all users, the Key 2
Lookup List could be used to select the required user names. In general, if a
specific value or list of values is required for any given Key, the associated
Lookup List can be used to select the values. If all values are to be reported,
the Key should be left empty. In this example we want to report on the
number of logins on a user basis for all users, so we leave Key 2 empty.

5. Specify the date range on which to report. In general this requires specifying a
From date and a To date. In this example we want all records for January and
February 2009:

Statistics Facility Statistics Module

8 Statistics

6. Perform the search to retrieve the required statistical records.
7. Select Tools>Reports from the Menu bar to display the Reports dialogue box

and select the Statistics Pivot Table report:

8. Select Report All to generate the report.
An Excel report will display.

 The report requires macros to be enabled so that a graph of the data can be
produced.

Statistics Module Statistics Facility

Statistics 9

Various tables and graphs can be produced as the data is now in a pivot table,
based on the different Key values supplied.

Once all the statistical information has been added to the Excel pivot table it is
possible to manipulate any of the statistical variables by either restricting values or
enabling all values. Pivot tables are extremely powerful and provide a very
convenient mechanism for the production of reports with multiple statistical
variables.

Statistics Facility Statistics Module

10 Statistics

While Excel is the recommended tool for manipulating statistical data, it is
possible to use any other reporting mechanism. If specialised output is required, it
is possible to use Crystal Reports to produce the finished report. In this case it is
recommended that the report is named after the type of statistical information it
expects to receive.

Periodic Tasks Statistics Facility

Statistics 11

Periodic Tasks
So far we have examined the new Statistics module, learned how to search for
statistical information and considered the reporting options available. Next we
explore how statistical information is generated.

In order to create useful reports, it is necessary to populate the Statistics module
with meaningful records. In the simplest case it is possible to create statistic
records manually by collating system information and inserting new statistic
records with the required keys, dates, times and value. However it would not take
long before someone forgets to add the required records thus rendering the
analysis incomplete.

The Periodic Tasks facility provides a framework in which tasks can be executed
on a regular basis. Each task is a perl script generating one or more records for
insertion into the estatistics table. At the heart of the framework is the vwperiodic
program.

Statistics Facility Periodic Tasks

12 Statistics

vwperiodic
The vwperiodic script is run at regular intervals to generate statistical information.
Its primary purpose is to invoke all the task scripts for a given time period (hourly,
daily, weekly, monthly). The usage message for vwperiodic is:
Usage: vwperiodic [-q] [-d yyyy:mm:dd[:HH:MM:SS]] period

where:

 -d yyyy:mm:dd[:HH:MM:SS] is the date to use for periodic tasks.
 -q specifies quiet mode, i.e. do not output

progress.
 period specifies the time period for which

statistical data is generated. Allowable
values:

• daily
• hourly
• monthly
• weekly

Extra periods may be added, e.g.
fortnightly, as required.

The Unix task scheduler cron is used to execute vwperiodic at the required
intervals. The crontab entries used to invoke vwperiodic are:

Run periodic tasks

30 * * * * /home/vw/client/bin/vwrun vwperiodic hourly 2>&1 |
/home/vw/client/bin/vwrun vwlogger -t "KE Vitalware Periodic Tasks
Report" periodic
0 6 * * * /home/vw/client/bin/vwrun vwperiodic daily 2>&1 |
/home/vw/client/bin/vwrun vwlogger -t "KE Vitalware Periodic Tasks
Report" periodic
30 6 * * 0 /home/vw/client/bin/vwrun vwperiodic weekly 2>&1 |
/home/vw/client/bin/vwrun vwlogger -t "KE Vitalware Periodic Tasks
Report" periodic
0 7 1 * * /home/vw/client/bin/vwrun vwperiodic monthly 2>&1 |
/home/vw/client/bin/vwrun vwlogger -t "KE Vitalware Periodic Tasks
Report" periodic

Periodic Tasks Statistics Facility

Statistics 13

The table below shows when each instance of vwperiodic is executed:

Command Executed

vwperiodic hourly 30 minutes past the hour being analysed.
vwperiodic daily 6 hours past the day being analysed.

vwperiodic weekly 6 hours and 30 minutes past the week being
analysed, on the Sunday morning.

vwperiodic monthly 7 hours past the month being analysed.

All output from running periodic tasks is sent to vwlogger which places the output
into a file based on the current date (yyyy-mm-dd) in the logs/periodic
directory. The log files provide a useful starting point if you suspect a problem
with the execution of periodic tasks. As you can see, each task period is invoked
after the time period for which it is generating statistics. The execution is delayed
in order to allow any activities started in the task period to complete before the
periodic tasks are run. It is also important to ensure that any system maintenance
routines are not running while periodic tasks are executing, otherwise access to
required tables may be denied.

When vwperiodic is invoked it looks for periodic tasks stored in either:

• etc/periodic/period
-OR-

• local/etc/periodic/period
where period is the argument supplied to vwperiodic (e.g. hourly). Each task
is a perl script with a .pl (perl library) extension. If more than one task is
found in the above directories, each task is executed sequentially in
alphabetical order. Tasks in local/etc/periodic override scripts with the
same name in etc/periodic.

Statistics Facility Periodic Tasks

14 Statistics

Tasks
Each task is a perl function called by vwperiodic to generate statistical
information. The bare-bones perl required for a task is:
#!/usr/bin/env perl

Copyright (c) 1998-2009 KE Software Pty Ltd

use strict;
use warnings;
use KE::Statistics;
no warnings 'redefine';

Calculate the number of records per table.

sub
Periodic
{
 my $session = shift;
 my $date = shift;
 my $period = shift;

 #
 # Insert task code here
 #

}

vwperiodic calls the function Periodic($session, $date, $period) within
the task script. The script then generates the statistical data and creates the
required estatistics record(s). The arguments to Periodic() are:

$session A KE::Statistics::Session object provides a connection to
the back-end database environment. The object may be used to
gather information to generate statistical values and to create
estatistics records.

$date A KE::Statistics::Date object contains the date and time at
which vwperiodic was invoked. The $date object is used to
determine the date/time range of the statistical information for the
task invoked.

$period A string that contains the name of the time period for the task
being run. Typical periods include hourly, daily, weekly and
monthly. Administrators may create new periods (e.g. fortnightly)
as required, in which case $period will contain the name of the
new period.

A perl module is provided to help with the creation of estatistics records and the
generation of statistical values. The module is KE::Statistics and must be
included in a task to gain access to its objects (via use KE::Statistics;). The

Periodic Tasks Statistics Facility

Statistics 15

module provides a suite of classes to manipulate statistical information. The
classes are:

KE::Statistics::Session
(page 24)

A KE::Statistics::Session object is
used to gather information from the back-
end server. The object may query any table
or set of tables to allow statistical
information to be generated. A set of
methods allow information about the server
environment to be gathered (e.g. list of
registered users, list of tables, etc.).

KE::Statistics::ResultSet
(page 27)

A KE::Statistics::ResultSet object is
returned by the
KE::Statistics::Session-
>search($texql) method. The object
provides access to the records returned as a
result of the specified query.

KE::Statistics::Date (page
29)

The KE::Statistics::Date object makes
the manipulation of dates easier. The object
contains a breakdown of a date ({year},
{month}, {day}, {hour}, {minute} and
{second}). A number of methods are
provided that allow the date/time to be
manipulated.

KE::Statistics::Statistics
(page 33)

The KE::Statistics::Statistics object
is designed to provide easy insertions into
the estatistics table. A Statistics object
allows the columns within a record to be set
and the record written. A check is made to
see if the record already exists in the table
and if so an update is performed rather than
an insertion. This allows periodic tasks to be
re-run to refresh data without duplicate
records being created.

Statistics Facility Periodic Tasks

16 Statistics

The task script below is used to generate the number of records on a per table basis
each day:

#!/usr/bin/env perl

Copyright (c) 1998-2009 KE Software Pty Ltd

use strict;
use warnings;
use KE::Statistics;
no warnings 'redefine';

Calculate the number of records per table.

sub
Periodic
{
 my $session = shift;
 my $date = shift;
 my $period = shift;

 #
 # Run texlist -l and parse the results
 #
 my %data;
 for my $line (split(/\n/, `texlist -l`))
 {
 my @bits = split(/\s+/, $line);
 $data{$bits[0]} = $bits[2];
 }

 #
 # Create a statistics object we can use to insert
 # statistics records.
 #
 my $stats = $session->statistics();
 my $yesterday = $date->yesterday();
 $stats->setDate($yesterday);
 $stats->setDateFrom($yesterday);
 $stats->setDateTo($yesterday);
 $stats->setKey1("Records by Table ($period)");

 #
 # Now add the data for each type of operation
 #
 for my $table(keys %data)
 {
 $stats->setKey2($table);
 $stats->setValue($data{$table});
 $stats->write();
 }
}

1;

Periodic Tasks Statistics Facility

Statistics 17

The example shows how it is possible to obtain a KE::Statistics::Statistics
object ($session->statistics()) and use it to create estatistics records. A point
of interest is that the three Date values are set to yesterday's date. As the task is
invoked 6 hours after the day has ended, it is necessary to use the date of the day
before.

The task below generates statistical data about the number of audit operations
performed on a per user and per table basis:
#!/usr/bin/env perl

Copyright (c) 1998-2009 KE Software Pty Ltd

use strict;
use warnings;
use KE::Statistics;
no warnings 'redefine';

Calculate user statistics for operations.

sub
Periodic
{
 my $session = shift;
 my $date = shift;
 my $period = shift;

 #
 # Zero the operations count for all users of all tables.
 #
 my $data = {};
 foreach my $user (@{$session->users()})
 {
 foreach my $table (@{$session->tables()})
 {
 foreach my $operation (@{$session-
>operations($table)})
 {
 $data->{$user}->{$table}-
>{$operation} = 0;
 }
 }
 }

 #
 # Get back all the records for the supplied date.
 #
 my $yesterday = $date->yesterday();
 my $query = "select AudUser, AudOperation, AudTable from
eaudit " .
 "where AudDate = DATE" . $session->quote() .
 $yesterday->dateText() . $session->quote();
 my $results = $session->search($query);
 die ("Invalid query $query") if (! defined($results));

 #

Statistics Facility Periodic Tasks

18 Statistics

 # Move through the results incrementing the appropriate
value
 # in the results table.
 #
 while ($results->next())
 {
 my $user =$results->text("AudUser");
 my $table =$results->text("AudTable");
 my $operation = $results->text("AudOperation");

 $data->{$user}->{$table}->{$operation}++;
 }
 $results->close();

 #
 # Create a statistics object we can use to insert
 # statistics records.
 #
 my $stats = $session->statistics();
 $stats->setDate($yesterday);
 $stats->setDateFrom($yesterday);
 $stats->setDateTo($yesterday);
 $stats->setKey1("Audit Statistics by Operation by Module
by User ($period)");

 #
 # Now move through the results table adding the
appropriate records
 # to the statistics table.
 #
 foreach my $user (keys(%{$data}))
 {
 $stats->setKey4($user);
 foreach my $table (keys(%{$data->{$user}}))
 {
 $stats->setKey3($table);
 foreach my $operation (keys(%{$data-
>{$user}->{$table}}))
 {
 $stats->setKey2($operation);
 $stats->setValue($data->{$user}-
>{$table}->{$operation});
 $stats->write();
 }
 }
 }
}

1;

The above task shows how the KE::Statistics::Session object can be used to
obtain information about the Vitalware environment (list of registered users, etc.)
and also query tables (eaudit table). For a complete description of all the methods
available in the KE::Statistics perl module please see Appendix A (page 21).

Periodic Tasks Statistics Facility

Statistics 19

Creating a new period
The Periodic Tasks facility is designed to be extensible: new periods can be added
as required. In this section we will add a new period that generates statistical
information on a quarterly basis. The steps required are:

1. Determine a name for the period, e.g. quarterly.
2. Create the directory in which the quarterly tasks will be stored, e.g.

local/etc/periodic/quarterly.
3. Add an entry to cron so that vwperiodic is invoked at a suitable time. The

entry for quarterly will look like:
0 7 1 1,4,7,11 * /home/vw/client/bin/vwrun vwperiodic
quarterly 2>&1 | /home/vw/client/bin/vwrun vwlogger -t "KE
Vitalware Periodic Tasks Report" periodic

4. Add the quarterly tasks to local/etc/periodic/quarterly.

Statistics generate on a quarterly basis. Note that the quarterly tasks are run at 7:00
am the day after the quarter ends.

Statistics Facility Periodic Tasks

20 Statistics

Regenerate missing data
In some cases it may be necessary to generate statistic records for time periods that
have passed, for instance periods before the Periodic Tasks facility was installed.
It is possible to run vwperiodic using the -d option to specify the date passed
through to the period tasks. In effect, the -d option makes it possible to alter the
value of $date passed through to the Periodic() function. It is up to the task
itself to examine the date and generate the correct information, where possible.

The date specified with the -d option should correspond to the date and time at
which the original tasks would have been executed. For example, to run the daily
tasks for 15 February 2009, the following command should be used:
vwperiodic -d 2009:02:16 daily

Notice how the date given was for the next day as this corresponds to the date on
which cron would have invoked the daily tasks for 15 February 2009. By varying
the date supplied it is possible to generate statistical information for periods before
Periodic Tasks was installed. If a record already exists for the statistic generated,
the value is simply updated.

The generation of data for previous time periods is successful only if the data for
the period specified exists: it is not possible to generate auditing information if the
audit records do not exist for the period specified.

 Statistics

Statistics 21

S E C T I O N 2

Appendix A - KE::Statistics perl
module

The KE::Statistics module provides a set of objects to make the creation of
tasks easier. The module is located in the utils/KE directory on the Vitalware
server. The code is documented using POD (plain old documentation). The
information in this Appendix was generated from the POD in the module.

Name
KE::Statistics - A set of objects usable by periodic scripts.

Appendix A - KE::Statistics perl module Synopsis

22 Statistics

Synopsis
use KE::Statistics;

sub
Periodic
{
 my $session = shift;
 my $date = shift;
 my $period = shift;

 my $users = $session->users();
 my $tables = $session->tables();
 my $operations = $session->operations("eregistry");

 my $query = "Select all from eregistry where Key1 = " .
 $session->quote() . "User" . $session->quote();
 my $results = $session->search($query);

 while ($results->next())
 {
 my $key = $results->text("Key1");
 ...
 }
 $results->close();

 my $stats = $session->statistics();
 my $yesterday = $date->yesterday();
 $stats->setDate($yesterday);
 $stats->setDateFrom($yesterday);
 $stats->setDateTo($yesterday);
 $stats->setKey1("Records By Table");
 $stats->setValue("3");
 $stats->write();
}

Description Appendix A - KE::Statistics perl module

Statistics 23

Description
The KE::Statistics module provides a set of objects to facilitate the generation
of records for the estatistics table. The Periodic Tasks subsystem provides a plug-
in mechanism that allows new tasks to be added to the existing framework. Each
task is contained within a perl library (.pl file) and must contain at least one
function, the Periodic($session, $date, $period) method.

The arguments are:

$session A KE::Statistics::Session object provides a connection to
the back-end database environment. The object may be used to
gather information to generate statistical values and to create
estatistics records.

$date A KE::Statistics::Date object contains the date and time at
which the Periodic Tasks subsystem was invoked. The $date
object is used to determine the date/time range of the statistical
information for the task invoked.

$period A string that contains the name of the time period for the task
being run. Typical periods include hourly, daily, weekly and
monthly. Administrators may create new periods (e.g.
fortnightly) as required, in which case $period will contain
the name of the new period.

The Periodic() function is called by the Periodic Tasks subsystem at a scheduled
time (e.g. hourly, daily, weekly, monthly, etc.) to create records in the estatistics
table.

The following objects are provided within the module:

Appendix A - KE::Statistics perl module Description

24 Statistics

KE::Statistics::Session

A KE::Statistics::Session object is used to gather information from the back-
end server. The object may query any table or set of tables to allow statistical
information to be generated. A set of methods allows information about the server
environment to be gathered (e.g. list of registered users, list of tables, etc.).

As a Session object is provided as an argument to the Periodic() function, it is
not necessary to create the object yourself, rather the supplied object should be
used (which is efficient as only one Session object is used by all tasks invoked in
the current execution). As the Session object is shared, you must not close() it
in your task.

Description Appendix A - KE::Statistics perl module

Statistics 25

Methods

new()
 $session = KE::Statistics::Session->new();

Creates a connection to the server environment. As the Periodic Tasks subsystem
provides a Session object to your task, it is not necessary to use this method. The
return value is an instance of a Session object.

search($texql)
 $results = $session->search("count(select all from eparties)");

Executes a TexQL query statement on the server. The $texql argument may be any
valid TexQL query statement. The return value is a KE::Statistics::ResultSet
object. If the query statement is invalid, an undef value is returned.

statistics()
 $stats = $session->statistics();

After your tasks have generated statistical information, it is necessary to write the data
into estatistics records. The KE::Statistics::Statistics object provides a
convenient object for creating estatistics records. The statistics() method returns a
Statistics object that may be used to create the records.

quote()
 $texql = "select all from eparties where NamLast contains " . $session-

>quote() . "Badenoff" . $session->quote();

When building TexQL statements, non-numeric values must be enclosed within quotes.
The quote character is configurable and is set to avoid escaping characters within
values. The default quote character is \001 (Ctrl+A). The quote() method returns the
current quote character.

close()
 $session->close();

Once all communication with the server environment is complete, the connection needs
to be closed so that system resources can be returned to other users. The close()
method terminates a Session connection. As the Periodic Tasks subsystem handles the
creation and closing of the session, you should not call this method.

users()
 foreach my $user (@{$session->users()})

The users() method returns a reference to a list of registered users in the server
environment. The list is built from records in the server registry (eregistry table).

tables()
 foreach my $table (@{$session->tables()})

The tables() method returns a reference to a list of tables in the server environment.
The Table Access Registry entry is used to build the list of tables.

Appendix A - KE::Statistics perl module Description

26 Statistics

operations($table)
 foreach my $operation (@{$session->operations("eparties")})

The operations() method returns a reference to a list of audit operations enabled for
the table supplied in the $table argument. The list returned is populated by operations
defined by texaudit. Use texaudit -h to get a complete list of the available
operations.

Description Appendix A - KE::Statistics perl module

Statistics 27

KE::Statistics::ResultSet

A KE::Statistics::ResultSet object is returned by the
KE::Statistics::Session->search($texql) (page 25) method. The object
provides access to the records returned as a result of the specified query. Once you
have finished dealing with the ResultSet object, it is necessary to close() it so
that system resources can be returned to other users.

Appendix A - KE::Statistics perl module Description

28 Statistics

Methods

new()
 $results = KE::Statistics::ResultSet->new($cursor)

A ResultSet object provides a convenient mechanism for dealing with a query cursor
($cursor). The cursor is returned by the server environment when a search has
completed. As a ResultSet object is returned by KE::Statistics::Session-
>search($texql) (page 25), it is not necessary to create instances of ResultSet
objects.

next()
 while ($results->next())

When a ResultSet object is returned by KE::Statistics::Session-
>search($texql) (page 25), the current record is positioned before the first record.
The next() method moves the current record position to the next matching record. A
value of 0 is returned if you are past the last matching record, otherwise 1 is returned.

text($column)
 $value = $results->text("NamLast");

The text() method returns the value for the column specified by $column argument.
The value is returned as a string. If the column does not exist, an undef value is
returned.

close()
 $results->close();

Once you have finished with the records in the ResultSet object, you should
close() (page 25) the object so that server resources are returned to users. If you do
not close a ResultSet object, it will be closed by the Periodic Tasks subsystem once it
has completed processing all tasks.

Description Appendix A - KE::Statistics perl module

Statistics 29

KE::Statistics::Date

In order to make the manipulation of dates easier, the KE::Statistics::Date
object is provided. The object contains a breakdown of a date ({year}, {month},
{day}, {hour}, {minute} and {second}). A number of methods are provided that
allow the date/time to be manipulated.

To help with arithmetic manipulation of dates the julianNumber() (page 30)
method is provided to return the Julian date (see
http://en.wikipedia.org/wiki/Julian_day). The integer part of the floating point
number returned represents the day number, while the fractional part encodes the
time within the day. Normal arithmetic may be applied to the number. The
julianDate() (page 30) method is used to convert a Julian date to a Date (page
33) object. For example, the following code could be used to find the date three
days back from today:
$now = KE::Statistics::Date->new();
$then = KE::Statistics::Date->julianDate($new->julianNumber() -
3);

Subtracting two Julian dates will result in the number of days, hours, minutes and
seconds between them:
$diff = $now - $then;

When using dates with TexQL query statements, always specify the date in ODBC
format (yyyy-mm-dd). The dateText() (page 30) method provides the value in
the correct format. Similarly, time values should be specified using a 24 hour
clock (HH:MM:SS). The timeText() (page 30) method provides the value
formatted correctly.

http://en.wikipedia.org/wiki/Julian_day

Appendix A - KE::Statistics perl module Description

30 Statistics

Methods

new($year, $month, $day, $hour, $minutes, $seconds)
 $date = KE::Statistics::Date->new();

$date = KE::Statistics::Date->new(2009, 02, 11);
$date = KE::Statistics::Date->new(2009, 02, 11, 16, 55, 02);

The new() (page 25) method creates a new instance of a Date (page 33) object. Up
to six arguments may be provided to initialise the Date object with a given date
and/or time. If any arguments are missing, the component for the current date/time is
used. Thus, calling new() without any arguments provides a Date object with the
current date and time.

clone()
 $newdate = $date->clone();

The clone() method creates a copy of a Date object initialised with the same
date/time as the calling Date object.

yesterday()
 $yesterday = $date->yesterday();

Returns a new Date object initialised with yesterday's date. The value is 24 hours
before the calling Date object; that is, the time component is not changed.

lastHour()
 $newdate = $date->lastHour();

Returns a new Date object initialised with the date/time one hour before the date/time
of the calling Date object.

lastSecond()
 $newdate = $date->lastSecond();

Returns a new Date object initialised with the date/time one second before the
date/time of the calling Date object.

lastWeek()
 $newdate = $date->lastWeek();

Returns a new Date object initialised with the date/time one week before the date/time
of the calling Date object.

lastMonth()
 $newdate = $date->lastMonth();

Returns a new Date object initialised with the date/time one month before the
date/time of the calling Date object. If the resulting date is past the end of the month,
the last day of the month is used.

set($year, $month, $day, $hour, $minute, $second)
 $date->set(2010, 12, 14); $date->set(undef, undef, undef, 0, 0, 0);

The set() method allows any component of a Date object to be assigned a value. If
undef is provided for a component, the component's current value is maintained. If a
component is missing, a value of undef is assumed.

Description Appendix A - KE::Statistics perl module

Statistics 31

compare($date)
 if ($date1->compare($date2) == 0)

The compare() method compares two Date objects for equality. The return value can
be used to determine the equality of the objects:
-1 - date argument is lower than date object
0 - date argument is same as Date object
+1 - date argument is greater than Date object

compareDate($date)
 if ($date1->compareDate($date2) == 0)

The compareDate() method compares two Date objects for equality at the date level.
The time component is ignored. The return value can be used to determine the
equality of the object's dates:
-1 - date argument is lower than date object
0 - date argument is same as date object
+1 - date argument is greater than Date object

compareTime($date)
 if ($date1->compareTime($date2) == 0)

The compareTime() method compares two Date objects for equality at the time level.
The date component is ignored. The return value can be used to determine the equality
of the object's times:
-1 - date argument is lower than date object
0 - date argument is same as date object
+1 - date argument is greater than date object

dateText()
 $texql = "select all from eaudit where AudDate = DATE" .

 $session->quote() . $date->dateText() . $session->quote();

The dateText() method returns a text representation of the object's date in ODBC
format (yyyy-mm-dd). The value is suitable for DATE values in TexQL queries
regardless of the date format used on the server.

timeText()

 $texql = "select all from eaudit where AudTime = TIME" .
 $session->quote() . $date->timeText() . $session->quote();

The timeText() method returns a text representation of the object's time in ODBC
format (HH:MM:SS). The value is suitable for TIME values in TexQL queries
regardless of the time format used on the server.

julianNumber($date)

 $julian = $date->julianNumber();

The return value of julianNumber() is a floating point number representing the day
number in the integer part and the time (in 1/86400th of a second) in the fractional
part. Note that the Julian number for a day represents midday for the given day. Any
time before midday will have an integer value one less than any time after midday. To

Appendix A - KE::Statistics perl module Description

32 Statistics

get the Julian number for any time within a day it is necessary to add 0.5 before
calling int(). Thus:
$daynumber = int($date->julianNumber() + 0.5);

returns the Julian day number. See http://en.wikipedia.org/wiki/Julian_day for details.
julianDate($number)

 $date = KE::Statistics::Date->julianDate($number);

A Date object is returned containing the date and time expressed by the Julian date
number passed as an argument. The julianDate() method provides a mechanism for
getting a Date object after some date numeric arithmetic has been performed.

weekDay()
 $day = ("Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat")[$date-

>weekDay()];

Returns the numeric day of the week for the given Date object, where 0 = Sunday, 6
= Saturday.

http://en.wikipedia.org/wiki/Julian_day

Description Appendix A - KE::Statistics perl module

Statistics 33

KE::Statistics::Statistics

The KE::Statistics::Statistics object is designed to provide easy insertions
into the estatistics table. A Statistics object allows the columns within a record
to be set and the record written. A check is made to see if the record already exists
in the table and if so an update is performed rather than an insertion. This allows
periodic tasks to be re-run to refresh data without duplicate records being created.

An estatistics record consists of four main components:

Keys A hierarchy of up to ten Keys may be specified. The Keys are used to
define the variables used to arrive at the statistical value. The first Key
should contain a title defining what the statistical value is. For example:
Key1: Audit Statistics by Operation by Module by User
(daily)
Key2: delete
Key3: ebirths
Key4: bill

allows you to determine from Key1 what information is being stored.
The next three Keys are the variables (Operation, Module, User)
available. The above convention should be used so users can easily
locate records within the estatistics table.

Date Three date fields exist in estatistics: DateExact, DateFrom and DateTo.
The DateExact field is filled if the statistical value represents a period of
a day or less (that is daily or hourly), otherwise it is left empty. The
DateFrom and DateTo fields should always be filled with the
commencement and completion dates respectively.

Time Three time fields exist in estatistics: TimeExact, TimeFrom and TimeTo.
The TimeExact field is filled if the statistical value represents a single
point of time in a day, otherwise it is left empty. If the period is a range
of time in a day, the TimeFrom and TimeTo fields should be filled with
the commencement and completion times respectively.

Value The Value is the statistical datum associated with the set of defined Keys
for the given date and/or time. For example, a Value of 10 with the
above Keys would indicate user bill has deleted 10 location records
for the specified date/time period.

When completing an estastitics record, the appropriate fields should be filled
based on the period the value covers.

Appendix A - KE::Statistics perl module Description

34 Statistics

Methods

new($session)
 $stats = KE::Statistics::Statistics->new($session);

A new instance of a Statistics object tied to the supplied Session ($session (page
23)) is created. You should not create instances of a Statistics object directly,
rather $session->statistics() (page 25) should be used as this ties the created
object to the session.

setDate($date)
 $stats->setDate($date);

Sets the DateExact column in estatistics to the value of the Date object supplied. The
DateExact column should be filled if the statistic record is for a particular day (that is,
daily) or a time range within a day (that is, hourly).

setDateFrom($date)
 $stats->setDateFrom($date);

Sets the DateFrom column in estatistics to the value of the Date object supplied. The
DateFrom column should always be filled. It contains the starting date for the statistics
period.

setDateTo($date)
 $stats->setDateTo($date);

Sets the DateTo column in estatistics to the value of the Date object supplied. The
DateTo column should always be filled. It contains the finishing date for the statistics
period.

setTime($date)
 $stats->setTime($date);

Sets the TimeExact column in estatistics to the value of the Date object supplied. The
TimeExact column should only be filled if the statistic record is for a single point in
time, otherwise the column should be left empty.

setTimeFrom($date)
 $stats->setTimeFrom($date);

Sets the TimeFrom column in estatistics to the value of the Date object supplied. The
TimeFrom column contains the starting time for the statistics period. It should only be
filled for statistic records for a single point in time, or a time range (that is hourly).

setTimeTo($date)
 $stats->setTimeTo($date);

Sets the TimeTo column in estatistics to the value of the Date object supplied. The
TimeTo column contains the completion time for the statistics period. It should only be
filled for statistic records for a single point in time, or a time range (that is hourly).

setKey1($value)
 $stats->setKey1($value);

Sets the Key1 column in estatistics to the value supplied.

Description Appendix A - KE::Statistics perl module

Statistics 35

setKey2($value)
 $stats->setKey2($value);

Sets the Key2 column in estatistics to the value supplied.
setKey3($value)

 $stats->setKey3($value);

Sets the Key3 column in estatistics to the value supplied.
setKey4($value)

 $stats->setKey4($value);

Sets the Key4 column in estatistics to the value supplied.
setKey5($value)

 $stats->setKey5($value);

Sets the Key5 column in estatistics to the value supplied.
setKey6($value)

 $stats->setKey6($value);

Sets the Key6 column in estatistics to the value supplied.
setKey7($value)

 $stats->setKey7($value);

Sets the Key7 column in estatistics to the value supplied.
setKey8($value)

 $stats->setKey8($value);

Sets the Key8 column in estatistics to the value supplied.
setKey9($value)

 $stats->setKey9($value);

Sets the Key9 column in estatistics to the value supplied.
setKey10($value)

 $stats->setKey10($value);

Sets the Key10 column in estatistics to the value supplied.
setValue($value)

 $stats->setValue($value);

Sets the Value column in estatistics to the value supplied. The statistical value is a
floating point number.

write()
 The write() method saves the data in the Statistics object to the estatistics table.

If a record already exists with the same Keys, dates and times, the value is updated,
otherwise a new record is created.

Appendix A - KE::Statistics perl module Bugs

36 Statistics

Bugs
Encoding dates as a Julian number with the time as the fractional component can
lead to issues when subtracting dates, as the result represents the number of days,
hours, minutes and seconds between the two dates. If you need to find the number
of days between two dates, it is necessary to clear the time component before
applying the subtraction:
$date1->set(undef, undef, undef, 0, 0, 0);
$date2->set(undef, undef, undef, 0, 0, 0);
$days = abs($date2->julianNumber() - $date1->julianNumber());

While this not a bug, it is something to keep in mind when manipulating Julian
date numbers.

See Also Appendix A - KE::Statistics perl module

Statistics 37

See Also
For a complete description of how Julian date numbers are generated and used see:
http://en.wikipedia.org/wiki/Julian_day

http://en.wikipedia.org/wiki/Julian_day

Copyright © 2009 KE Software Pty Ltd
This work is copyright and may not be reproduced except

in accordance with the provisions of the Copyright Act

Vitalware Documentation

Record Recall
Document Version 1.0

Vitalware Version 2.1

Contents
S E C T I O N 1 Record Recall 3

Overview 3
Recall Single Record 4
Recall batch mode 7
Registry Entry 10

Record Recall
• Overview
• Recall single record
• Recall batch mode
• Registry entry

Overview
Have you ever changed a record and wished later that you could change it back to
how it was before saving it? Have you ever performed a global replace only to find
the changes were not exactly what you had in mind? Wouldn't it be nice if Vitalware
provided a facility that allowed you to recall the data for a single record or group of
records to an earlier version? Well, the new Record Recall facility introduced in KE
Vitalware 2.1.01 provides this functionality.

KE Vitalware 2.0.03 saw the introduction of a new auditing facility. The facility
maintains a complete list of changes made to records within a Vitalware installation.
The new Audit Trails module allows users to view these changes along with the
associated metadata. This metadata includes:

• Date modified
• Time modified
• Who made the changes

One use of the audit information is to provide statistical analysis about changes to
data within an Vitalware environment. It is possible to use this data to produce reports
about the number of records inserted, modified and deleted on a system wide or per
user basis.

A list of all modifications made each time a record is saved is produced as a record is
changed over time. The Record Recall facility provides an automated way of
applying changes to a record so that it looks like an earlier version. In essence it
allows the modifications made to be "undone" so that the record appears as it did at an
earlier time, although it is important to understand that the record is not reset to the
earlier version: rather the record is modified so that it has the same data as the earlier
version. The distinction here is that the "recalled" record is just another change to the
current record, not a winding back to a previous version. As such, all existing audit
trail records are maintained and a new one is created for the "recalled" record.

The Record Recall facility allows a single record to be recalled to the data it
contained in a previous version and also provides a batch mode for a group of (one or
more) records to be recalled to their state at a given date and time.

Copyright 2009 KE Software Pty. Ltd. 3

Recall Single Record
The Record Recall facility is invoked from the Edit>Recall menu. It may be selected
while viewing or editing a record. If you want to recall the data for a single record, the
Current Record sub-menu is used:

(All dates are shown in dd/mm/yyyy format. Vitalware will use the date format defined on your server
when displaying dates)

The Current Record sub-menu lists the date and time of the last five modifications
of the current record, as well as the user who made the changes. If you select one of
these entries, the current view is changed to Detail mode and the data is updated to
reflect the values in the record as at the date and time selected. The record is left in
Edit mode and you may save it to affect the recall, or cancel the changes.

If there are more than five modifications, you can use the All... menu entry to view a
list of all the dates and times:

Copyright 2009 KE Software Pty. Ltd. 4

You may select any entry from the list and click OK to recall that version of the data.
Once again the record will be updated to contain the data as it was at the date and time
selected. You will be left in Edit mode, allowing you to save or discard the changes.
The View button invokes the Audit Trail module with the update audit records for
the current record displayed. Note that only the audit records related to data changes
will be shown; other audit records (e.g. insertion, searching) are not shown.

Once a date and time is selected all modifications to the current record from the most
recent to the entry selected are "undone". For example, if you selected 02/12/2009
15:57 (vw) from the list above, the data changed by the following records would be
reversed in the order listed:

• 02/12/2009 16:01 (vw)
• 02/12/2009 15:59 (vw)
• 02/12/2009 15:57 (vw)

Once again you will be left in Edit mode so you may save or discard the changes.

While you are in Edit mode, recalling a previous version of the record will only
update fields that have data to be recalled within the specified period; all other fields
are not affected. For example, if you have just added data to fields for the first time,
that data will not be removed by recalling an earlier version of the record.

It is possible to recall the data for a record even if you did not make the changes to the
record. However, Vitalware will enforce both field and Record Level Security when
applying a recall. If you do not have edit privileges for the current record, either
through Record Level Security or a lack of the daEdit privilege, you cannot select the
Recall menu option.

If the data recall would result in a field being changed that you do not have
permission to update (missing duEdit privilege), a message similar to the following
will display:

Copyright 2009 KE Software Pty. Ltd. 5

The recall will continue to update fields once OK is clicked. In this case the record
will not contain an exact copy of the data as it was at the date and time selected.
Vitalware will leave you in Edit mode and you may save or discard the recalled data.

Copyright 2009 KE Software Pty. Ltd. 6

Recall batch mode
It is also possible to recall a group of (one or more) records as a single batch. In this
case the records are updated and saved without the need to recall each record
individually. The Edit>Recall>Selected Records menu option is available when one
or more records are selected and you have the daReplace privilege (that is, you are
allowed to use the Replace command).

When the menu option is invoked you will be prompted for the date and time to which
the selected records will be recalled:

Once you have supplied a date and time and clicked OK, Vitalware will begin
recalling each record selected and applying an update to reflect the values in the
record at the date and time specified. As with recalling a single record, you must have
permission to modify the fields that are recalled. If not, the process will stop and a
similar message to that for a single recall is displayed:

Copyright 2009 KE Software Pty. Ltd. 7

You must also have permission to update the record itself (via Record Level
Security). If you do not have permission to modify a record, an error is displayed:

You can decide to cancel or continue the recall. Once the operation is complete a
summary dialogue is displayed:

Copyright 2009 KE Software Pty. Ltd. 8

After the batch recall has finished, the selected records will be updated with the
recalled values.

Copyright 2009 KE Software Pty. Ltd. 9

Copyright 2009 KE Software Pty. Ltd. 10

Registry Entry
The Recall Record facility uses a Registry entry to determine which fields should not
be updated when applying a recall. The format of the entry is similar to that for the
Ditto entry:

 System|Setting|Table|table|Recall Skip
Columns|column;column;...

where:

table is the name of the module in which the columns are
to be skipped; and
column;column;... is a semi-colon separated list of
column names.

Vitalware does not recall the Date Modified, Time Modified and Modified By fields
when updating a record (as these fields contain the data concerning the person
performing the recall operation).

Copyright © 2009 KE Software Pty Ltd
This work is copyright and may not be reproduced except

in accordance with the provisions of the Copyright Act

Record Templates

KE Vitalware Documentation
Document Version 1.0

KE Vitalware Version 2.1

Contents

Record Templates 1

How to create records using Record Templates 3
How to create a Record Template 12
How to define a Record Template 15

Atomic Fields 17
Nested Table Fields 17
Double Nested Table 18
An example record 19
template tag 20
source tag 20
input tag 21
prompt tag 22
help tag 22
value tag 23
records tag 23
number tag 23
report tag 23
column tag 24

Some example Record Templates 25
Example 1 25
Example 2 27

 KE EMu Documentation

Record Templates 1

S E C T I O N 1

Record Templates
Vitalware has provided a Ditto utility for a long time. The Ditto utility allows
users to extract information from an existing record and copy it into one being
added. Using Ditto it is possible to copy data from:

• One field in a record into the same field in another record.
• A tab in a record into the same tab in another record.
• All fields in a record into another record.

While this facility is useful for adding similar records, it does have some short
comings:

• Only a single record can be added at a time.
• Only single fields, tabs or the entire record can be extracted.
• Incrementing numbers, such as Registration numbers, must be entered for

each record.
• A series of records with consecutive numbers is difficult to create.

Vitalware also provides a Default Values facility that allows one or more fields to
be initialised with values when adding a new record. Users can define a number of
Default Values templates and select one to be used when the next insertion is
initiated. While Default Values can be defined for any field, it is not possible to
extract data from existing records.

KE Vitalware 2.1.01 sees the introduction of the Record Template utility, which
combines the functionality of the Ditto and Default Values facilities:

• A number of records can be created in a batch and added to a set of one or
more currently listed records.

• An optional starting IRN can be specified, allowing consecutive IRNs to be
allocated.

• Data can be extracted from the current (source) record and added to new
records. Data may be mapped from one field in the source record to another
field in the created record.

• A starting number and incrementation can be specified, allowing a range of
consecutive values to be allocated.

• A wizard is provided to walk through the process.
• A report is generated listing the IRN and incrementing numbers allocated for

each record created.
• An XML based template description is used to specify what data is placed in

created records.

Record Templates How to create records using Record Templates

2 Record Templates

Some useful applications of the Record Template utility include:

• Creation of Part records for an existing object record.
• Insertion of preparation records for a specimen record (e.g. tissue samples).
• Reserving a block of IRNs or Registration numbers.

In the next section we will look at how to use the new facility, followed by how to
set up your own templates.

How to create records using Record Templates Record Templates

Record Templates 3

How to create records using Record Templates

The Record Template utility can be used to create a batch of records based on an
existing record.

1. Search for or otherwise list a group of records.
As the purpose of the Record Template utility is to create a series of records
based on an existing record, the first step is to retrieve one or more records.
Any means may be used to retrieve the record to be used as the source record
(the record from which values are to be extracted).

2. Make the source record the current record.
The current record is identified differently depending on the display view:
List View
The current record is enclosed in a dotted rectangle. In this example, record
number 203 is the current record:

Record Templates How to create records using Record Templates

4 Record Templates

Contact Sheet View
A dotted rectangle appears around the image and label of the current record.
In this example, image number 203 is the current record:

Page View
The current record is the displayed record:

How to create records using Record Templates Record Templates

Record Templates 5

Details View
The current record is the displayed record:

3. Select Tools>Templates in the Menu bar

-OR-
Use the keyboard shortcut, ALT+T+M.
The Record Templates box displays with a list of pre-defined Record
Templates (if any):

4. Select a Record Template from the list and select OK .

Record Templates How to create records using Record Templates

6 Record Templates

The Record Template Wizard displays:

Specify the following:
• Number of records to create

Enter the number of records to be created when the Wizard is completed.
There may be a maximum number of records that may be created: the
limit is set by the creator of the Record Template. If a limit has been set, a
hint will appear next to the box into which the record count is entered (as
above).

• Starting IRN
Enter the IRN (Internal Record Number) of the first record to be created.
Subsequent numbers will be given to each new record. If a starting IRN is
not specified, the next available number will be used. A Template creator
may choose to hide this setting, in which case the next available number
is always used.

5. Select Next to continue.

How to create records using Record Templates Record Templates

Record Templates 7

The Input Values screen displays:

Input Values screens are where the data to be inserted into the new records is
specified. The exact layout of the screen will vary depending on what
information the Template creator wants to use. The screen has four elements:
• Input field

This is the Vitalware field into which the entered value will be added.
The text displayed is the prompt of the field followed in brackets by the
field group in which it appears.

• Input prompt
To the left of the input text box a prompt can be found indicating the type
of value to be entered (Enter a series title in the example above). The
creator of the Template specifies what prompt is displayed.

• Input text box
Enter the value to be inserted in the record created. The input text box
may be single or multi-lined as defined by the Template creator. The
creator may also indicate what type of data should be entered (text,
integer or float) and whether a value is mandatory.

• Input help
This is a help message specified by the Template creator and designed to
provide more information about, and examples of, the input value (Series
title in the picture above). The input help is optional and will not appear
on the Input Values screen if not defined by the Template creator.

6. Select Next to continue.
A number of Input Value screens may be displayed depending on how many
input values are required for the created records. Input values may also be
used to request the starting value for fields that contain incrementing data.

Record Templates How to create records using Record Templates

8 Record Templates

For example, a Registration Number may consist of the current year followed
by a number within the year (e.g. 2008.23, 2006.154, etc.). An input value
may ask for the year on one screen and the starting number within the year on
the next screen. When the records are created, numbers will be allocated
sequentially from the starting number for the supplied year. Using this
mechanism it is easy to pre-allocate a batch of Registration Numbers to a set
of records.

7. Select Next to move through all the Input Value screens.
The Settings screen displays:

This is a summary of the number of records to be created, the starting IRN

and any input values. Select Back if necessary to amend any
details.

8. Select Next to continue.

How to create records using Record Templates Record Templates

Record Templates 9

The Creating screen displays:

The records are now created. A gauge provides a visual indicator of creation
progress. The numbers of records created and errors encountered are
displayed.
If an error occurs, the creation process is halted and a message displays:

i. Select Abort to end the creation process without further records being

created
-OR-

ii. Select Ignore to move on to the creation of the next record.

9. Select Finish once the records are created.

Record Templates How to create records using Record Templates

10 Record Templates

The Template Creation Complete screen displays:

Specify the following:
• View Template Creation Report

Select whether a report listing the records created will be shown.

• Select Close to finish the creation process. If View
Template Creation Report was selected, a report displays:

Template record creation started 01 Dec 2009 14:46:00
Number of records to create: 5
Starting IRN: Next available IRN
Input field "Registration Date: (Registration
Details)/Commencement Date: (Registration Details)"
 Value: 25/11/2009
Input field "Registration Reason: (Celebrant Status)"
 Value: Temporary Licence

Record 1, created (irn: 453)
Record 2, created (irn: 454)
Record 3, created (irn: 455)
Record 4, created (irn: 456)
Record 5, created (irn: 457)

Number of errors: 0
Number of records created: 5
Template record creation finished 01 Dec 2009 14:46:13

The entry for each record created may vary as the Template creator may
include data from the created records (e.g. Registration Number).

How to create records using Record Templates Record Templates

Record Templates 11

The records created are added to the records currently displayed. They are
placed immediately after the current record, so that moving forward one
record will display the first of the new records.

Record Templates How to create a Record Template

12 Record Templates

How to create a Record Template

The creation of a Record Template requires producing an XML description that
details:

• Which fields are to be copied from the source record.
• Which input values are to be specified when the Template is used.
• The maximum number of records to be created.
• Whether a starting IRN may be specified.
• What data to show for each record created in the Template report.

To be able to create a Record Template in a module a user must have (or be a
member of a group that has) the daTemplates permission set for that module.

1. Search for or otherwise list a group of records.
2. Select Tools>Templates in the Menu bar

-OR-
Use the keyboard shortcut, ALT+T+M.
The Record Templates box displays with a list of pre-defined Record
Templates (if any):

3. Select New .

How to create a Record Template Record Templates

Record Templates 13

The Record Template Properties box displays:

4. Enter a descriptive name for the Record Template in the top text field.
5. In the Record Template XML area enter the XML description for the Record

Template.
The XML format is covered in detail in How to define a Record Template
(page 15).

Record Templates How to create a Record Template

14 Record Templates

6. If required, select the Security tab to give other users permission to use this
Record Template:

i. Select users/groups from the Names list who are to have access to this

Record Template.

ii. Select Add .
Continue to select all users/groups who are to have access to this Record
Template.

7. Select OK .
Your new Record Template is added to the Record Template list.

8. Select Close to return to your list of matching records
-OR-

Select OK to use the new Record Template.

 How to define a Record Template

Record Templates 15

How to define a Record Template

The description of a Record Template is an XML document. The complete structure is:

 Please be aware that there are comments and instructions in the code below. These are included as: <!-- Comment /
Instruction --> and may require that you add / repeat code.

<template maxrecord="number" setIRN="yes|no">
 <tuple>
 <atom name="colname"> <!-- Atomic value: add atomic values as required -->
 text
 <source name="colname" rows="rowlist" nestedrows="rowlist"/>
 <input type="text|integer|float" cols="number" rows="number" increment="number" mandatory="yes|no">
 <prompt>
 text
 <source name="colname" rows="rowlist" nestedrows="rowlist"/>
 </prompt>
 <help>
 text
 <source name="colname" rows="rowlist" nestedrows="rowlist"/>
 </help>
 <value>
 text
 <source name="colname" rows="rowlist" nestedrows="rowlist"/>
 </value>
 </input>
 <records/>
 <number/>
 </atom>
 <table name="colname"> <!-- Nested or double nested table - add tables as required -->
 <tuple> <!-- nested table - repeatable -->
 <atom>
 <!-- Add code as for atom above -->
 </atom>
 </tuple>

Record Templates How to define a Record Template

16 Record Templates

 <tuple> <!-- Double nested table - add as required-->
 <table>
 <source name="colname" rows="rowlist" nestedrows="rowlist"/>
 <tuple> <!-- Nested table - add as required-->
 <atom>
 <!-- Add code as for atom above -->
 </atom>
 </tuple>
 </table>
 </tuple>
 <source name="colname" rows="rowlist" nestedrows="rowlist"/>
 </table>
 </tuple>
 <report>
 text
 <column name="colname"/>
 </report>
</template>

 How to define a Record Template

Record Templates 17

Although the XML may look complex, the main part is the specification of the
fields that require values to be set. The format of the XML for this part is exactly
the same as that generated by the Vitalware XML Export facility, which is the
same as that used by the Vitalware XML Import tool. Using this same structure
means a skeletal XML record can be generated by building a report with the
required fields and producing an XML Export file. Once you have the skeletal
XML it can be expanded to include any additional options required.

A quick summary of the XML structure used by the three kinds of fields in
Vitalware may make things clearer. The three field kinds are:

• atomic
• nested table
• double nested table

Atomic Fields

An atomic field contains a single value. It is represented by a single data entry
area in the Vitalware client. The XML snippet used to represent an atomic value
is:

 <atom name="colname">value</atom>

where:

 colname is the name of the field
 value is the contents of the field

Nested Table Fields

A nested table field contains a list of values. A grid is used to display the list in the
Vitalware client. The XML format for a nested table is:

<table name="colname">
 <tuple>
 <atom>value 1</atom>
 </tuple>
 <tuple>
 <atom>value 2</atom>
 </tuple>
 ...
</table>

where:

 colname is the name of the field.
 value 1, value 2

etc.
are the values in the list.

There is no limit to the number of <tuple> entries in a nested table.

Record Templates How to define a Record Template

18 Record Templates

Double Nested Table

A double nested table field consists of a list where each entry is itself a list. The
Vitalware client uses the nested form construct (where a gird at the bottom of the
tab controls what data is shown) where a grid is displayed in the top part of the
tab. The XML required for a double nested table is:

<table name="colname">
 <tuple>
 <table>
 <tuple>
 <atom>value 1-1</atom>
 </tuple>
 <tuple>
 <atom>value 1-2</atom>
 </tuple>
 ...
 </table>
 </tuple>
 <tuple>
 <table>
 <tuple>
 <atom>value 2-1</atom>
 </tuple>
 ...
 </table>
 </tuple>
 ...
</table>

where:

 colname is the name of the field.
 value 1-1, value 1-2 etc. are the list of values in the first list
 value 2-1, value 2-2 etc. are the list of values in the second

list and so on.

There is no limit to the number of values in any of the lists.

How to define a Record Template Record Templates

Record Templates 19

An example record

When specifying a record the three field types are enclosed within
<tuple></tuple> tags. Let's consider an example where we are to encode the
data in the following record:

The XML below represents the data entered by a user and does not include
computed values (found in the Derived Names group box when Automatic is set to
Yes):

<tuple>
 <atom name="NamPartyType">Person</atom>
 <atom name="NamTitle">Dr</atom>
 <atom name="NamFirst">Isaac</atom>
 <atom name="NamMiddle">Jim</atom>
 <atom name="NamLast">Huels</atom>
 <table name="NamOtherNames_tab">
 <tuple>
 <atom>Zak</atom>
 </tuple>
 <tuple>
 <atom>Jimmy</atom>
 </tuple>
 </table>
 <atom name="NamSex">Male</atom>
 <atom name="NamAutomatic">Yes</atom>
</tuple>

Fields that do not contain a value are not specified. You may include empty values
if you want to remove any data already in the field (e.g. a Default value added
when a new record is added). An empty value consists of a tag of the form:

<atom name="colname"/>

Record Templates How to define a Record Template

20 Record Templates

We will now examine each of the tags that may be used to specify a Record
Template in detail:

template tag

The <template> tag encloses the Record Template XML description. It must be
the first tag, and the corresponding closing tag </template> must be the last tag.
Attributes associated with the tag represent options available when the template is
used.

Attributes

maxrecords

Specifies the maximum number of records that may be generated using this
Template. If a number is given, a hint is displayed next to the Number of
records to create input text box (page 3). If the attribute is not specified, no
limit exists on the number of records that can be created.

setIRN

Indicates whether a starting IRN may be entered when the Record Template is
used. If a value of no is supplied, the Starting IRN prompt and input box are
removed from the Record Template Records screen. The default value is yes.

Contains
<tuple>
<report>

Contained within

none

source tag

The <source> tag extracts information from the source record (the current
record). The tag is replaced with the value(s) extracted. Data can be extracted from
any field kind (atomic, nested table and double nested table) into any field kind.
Where a mismatch between the field kinds occurs the data is either converted to a
newline separated value (when going from a table to an atomic field) or wrapped
in table XML (when going from an atomic value to a table). Using attributes it is
possible to extract parts of tables or double nested tables.

Attributes

name

Specifies the name of the column from which the value is to be extracted. The
name attribute is mandatory.

rows

Contains a list of numbers indicating which rows should be extracted from a
nested table. The list is a comma separated set of numbers or ranges. An

How to define a Record Template Record Templates

Record Templates 21

example list setting is rows="1,3-5,7-" which indicates that rows one, three
to five and seven onward are to be extracted. If this attribute is not specified,
all rows are extracted.

nestedrows

Contains a list of rows indicating which of the outer rows in a double nested
table are to be extracted. The format of the row list is the same as for the rows
attribute. The rows attribute is used to specify the inner row numbers to be
extracted. The default is to extract all nested rows.

Contains

None

Contained within
<table>
<atom>
<prompt>
<help>
<value>

input tag

The <input> tag indicates that the user should be asked to enter a value when the
Record Template is used. The tag is replaced with the value entered. Each
<input> tag found in the Record Template description produces an Input Values
screen when the Template is used.

Attributes

type

Defines the type of data the user may enter. The available types are:
• text
• integer
• float
When the user moves out of the input text box a check is made to ensure a
legal value has been input. The default type is text.

cols

Indicates the width in characters of the input box displayed on the Input
Values screen when the Template is used. The number does not limit the
length of the value that may be entered. The default is 8.

rows

Specifies the number of rows the input text box should display on the Input
Values screen when the Template is used. Users may enter more lines than the
number specified. The default is 1.

increment

Indicates that the value entered should be incremented by the increment

Record Templates How to define a Record Template

22 Record Templates

amount after each record is created. For example, setting increment="1"
would increase the value entered by the user by one for every record created.

mandatory

Determines whether an input value must be specified. A value of no indicates
an empty value is acceptable, while yes ensures that a value is entered. The
default value is yes.

Contains
<prompt>
<help>
<value>

Contained within
<input>

prompt tag

The <prompt> tag appears within an <input> tag and defines the prompt
displayed on the Input Values screen. The default prompt is Input value.

Attributes

None

Contains

text
<source>

Contained within
<input>

help tag

The <help> tag appears within an <input> tag and specifies a help message
displayed below the input text box on the Input Values screen. If a help tag is not
defined, a help message is not displayed.

Attributes

None

Contains

text
<source>

Contained within
<input>

How to define a Record Template Record Templates

Record Templates 23

value tag

The <value> tag appears within an <input> tag and contains the initial value
shown in the input text box on the Input Values screen. If a value is not specified,
the input text box will be empty.

Attributes

None

Contains

text
<source>

Contained within
<input>

records tag

The <records> tag is replaced with the number of records to be created.

Attributes

None

Contains

None

Contained within
<atom>

number tag

The <number> tag is replaced with the number of the record being created.

Attributes

None

Contains

None

Contained within
<atom>

report tag

The <report> tag defines the text to be displayed for each record created in the
Record Template report file. The text defined should identify the record created

Record Templates How to define a Record Template

24 Record Templates

uniquely (e.g. Registration Number).

Attributes

None

Contains

text
<column>

Contained within
<template>

column tag

The <column> tag is replaced with the value in the specified column name in the
created record.

Attributes

name

Specifies the name of the column from which the value is to be extracted. The
name attribute is mandatory.

Contains

none

Contained within
<report>

Some example Record Templates Record Templates

Record Templates 25

Some example Record Templates

Example 1

The Record Template XML for our first example is:
 <template>
 <tuple>

 <atom name="DetProductType"><source
name="DetProductType"/></atom>

 <atom name="DetProductStatus">Available</atom>

 <atom name="DetProductCode">

 <input cols="15" rows="1" mandatory="yes">

 <prompt>Enter the Product Code:</prompt>

 <help>The code of the product being created.</help>

 </input>

 </atom>

 <atom name="DetPrice">

 <input type="float" cols="10" rows="1" mandatory="yes">

 <prompt>Enter the price:</prompt>

 <help>The price of the product.</help>

 </input>

 </atom>

 </tuple>

</template>

The Template is used to create Product records in the Products module. A suitable
title would be Create New Products. The following values are set in the records
created:

• Available in the DetProductStatus field.
• Copies the Product Type from the current record to the DetProductType field

in the template records.
• Asks for the Product Code and sets the DetProductCode field to the value

entered.
• Asks for the price and sets the DetPrice field to the value entered.

Record Templates Some example Record Templates

26 Record Templates

The Input Values screen used to request the ‘Product Code’ looks like:

The Input Values screen used to request the ‘Price’ looks like:

Notice how the input prompt and help use the text specified in the Template XML.

Some example Record Templates Record Templates

Record Templates 27

Example 2

In this example we set up a Record Template for the Multimedia module that
copies the Dublin Core fields and asks the user for the Title, Creator and
Description. The input fields do not have to have a value, but are initialised with
the value from the source record. The maximum number of records to be created
will be set to 10 and a starting IRN cannot be specified. The following Record
Template XML is suitable:

 Some example Record Templates

Record Templates 28

<template maxrecords="10" setIRN="no">
 <tuple>
 <table name="DetSubject_tab"><source name="DetSubject_tab"/></table>
 <table name="DetContributor_tab"><source name="DetContributor_tab"/></table>
 <table name="DetLanguage_tab"><source name="DetLanguage_tab"/></table>
 <table name="DetRelation_tab"><source name="DetRelation_tab"/></table>
 <table name="DetDate0"><source name="DetDate0"/></table>
 <atom name="DetResourceType"><source name="DetResourceType"/></atom>
 <atom name="DetPublisher"><source name="DetPublisher"/></atom>
 <atom name="DetCoverage"><source name="DetCoverage"/></atom>
 <atom name="DetSource"><source name="DetSource"/></atom>
 <atom name="DetRights"><source name="DetRights"/></atom>
 <atom name="MulTitle"><input cols="30" mandatory="no">
 <prompt>Enter the Media Title:</prompt>
 <help>Enter the title of the media.</help>
 <value><source name="MulTitle"/></value>
 </input></atom>
 <table name="MulCreator_tab">
 <tuple>
 <atom><input cols="30" mandatory="no">
 <prompt>Enter the Media Creator:</prompt>
 <help>Enter a description of the media.</help>
 <value><source name="MulCreator_tab" rows="1"/></value>
 </input></atom>
 </tuple>
 </table>
 <atom name="MulDescription"><input rows="3" cols="40" mandatory="no">
 <prompt>Enter the Media Description:</prompt>
 <help>Enter a description of the media.</help>
 <value><source name="MulDescription"/></value>
 </input></atom>
 </tuple>
</template>

 Some example Record Templates

Record Templates 29

Notice how the first value of the MulCreator_tab table is extracted as the default
value for the media creator. The picture below shows the Input Values screen for
media description:

Copyright © 2009 KE Software Pty Ltd
This work is copyright and may not be reproduced except

in accordance with the provisions of the Copyright Act

Vitalware Documentation

XSLT Processing Of XML Import Files
Document Version 1.0

Vitalware Version 2.1

 i

Contents
Overview 1
XSLT processing 3
Pre-configured XSLT files 8

 1

Overview

The advent of XML (eXtensible Markup Language) has provided a standards based
mechanism for exchanging data between computer systems. XML, as the name implies,
is extensible; that is the format in which the data is stored can be adapted to suit the data
source. While this is one of the strengths of XML it also causes problems when
importing data from one system into another in which the data formats do not match
exactly. For example, consider this XML snippet describing a work of art in an
imaginary Births:
<table name="ebirths>
 <tuple>
 <atom column="ChildNames">Agnes</atom>
 <atom column="ChildDOB">2007-07-02<atom>
 <atom column="MotherGivenNames">Samsani</atom>
 <atom column="MotherSurname">Annlise</atom>
 </tuple>
</table>

You receive this data from another institution using Vitalware and want to import it into
your system, but there is a mismatch between some of the column names in your system
and those in the originating institution. For example, in your Births module, the
ChildNames column may be called ChildGivenNames and the ChildDOB column may
be called ChildDateOfBirth. Before you can load the XML into your system it is
necessary to transform it so that it appears like:
<table name="ebirths">
 <tuple>
 <atom column="ChildGivenNames">Agnes</atom>
 <atom column="ChildDateOfBirth">2007-07-02<atom>
 <atom column="MotherGivenNames">Samsani</atom>
 <atom column="MotherSurname">Annlise</atom>
 </tuple>
</table>

One way to make the change is to use a text editor and replace all instances of
ChildNames with ChildGivenNames and ChildDOB with ChildDateOfBirth. If the
amount of data is small or if the import is to occur only once then this solution is
feasible. If, however, a number of imports will occur in which the data will be supplied
in the same format, it makes sense to use XSLT (eXtensible Stylesheet Language
Transforms) to apply the changes before the data is loaded. XSLT is an XML-based
scripting language used to manipulate XML.

For example, the following script can be used to perform the required column renaming
outlined above:

2

<?xml version="1.0" encoding="iso-8859-1"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:map="urn:map" version="1.0">
 <!-- Output in XML format -->
 <xsl:output method="xml" encoding="utf-8"/>

 <!-- Mapping table of old names to new names -->
 <map:entries>
 <map:entry oldname="ChildNames" newname="ChildGivenNames"/>
 <map:entry oldname="ChildDOB" newname="ChildDateOfBirth"/>
 </map:entries>
 <xsl:variable name="map" select="document('')/*/map:entries/*"/>
 <!-- For every node we copy it over. Note that attributes
 are handled by the next template. -->
 <xsl:template match="*">
 <xsl:copy>
 <xsl:apply-templates select="@*|node()"/>
 </xsl:copy>
 </xsl:template>

 <!-- Special handling of attributes. -->
 <xsl:template match="@*">
 <xsl:variable name="entry" select="$map[@oldname =
current()]"/>
 <xsl:choose>
 <xsl:when test="name() = 'column' and $entry">
 <xsl:attribute name="column">
 <xsl:value-of select="$entry/@newname"/>
 </xsl:attribute>
 </xsl:when>
 <xsl:otherwise>
 <xsl:copy/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:template>
</xsl:stylesheet>

To execute the XSLT script an XSL engine is required. A number of products provide
XSL engines that can be used to transform the XML for loading into Vitalware. One
such product is Cooktop (http://www.xmlcooktop.com). When a file is received from an
institution, it is only necessary to perform the transformation before importing the XML
into Vitalware.

Vitalware 2.1.01 has streamlined the above process by adding XSLT processing as part
of the Import tool for XML files: it is now possible to import an XML file and have it
transformed as part of the Import process. The XSLT file used to transform the XML
can be stored on your local machine (local file) or on the Vitalware server (pre-
configured file). Files stored on the Vitalware server are available to all users. In
general, the pre-configured files are "standard" transformations used to manipulate data
from known sources. A known source can be:

• a standard format (e.g. Darwin Core or Dublin Core)
• a repeatable format.

Using repeatable formats it is possible to define XSLT files that allow for easy import
of data from other Vitalware clients for customised modules such as the Births, Deaths
and Marriages Events.

http://www.xmlcooktop.com/

 3

XSLT processing

The Vitalware Import Wizard has been extended to provide XSLT processing for XML-
based import files. The extensions are only available for files with a .xml file suffix. If
you have XML files with a .txt suffix, it will be necessary to rename them in order to
use the XSLT processor.

To access the XSLT processor, in the module in which records are to be imported:

1. Select Tools>Import from the Menu bar.

 If the Import option is greyed out, you do not have the necessary permissions to
use it.

The Select File To Import box displays.
2. Navigate to the file that contains the data to be imported, select it and select Open.

The Import Wizard displays:

3. Select Custom from the Import Type screen and click Next.

The XSLT Processing screen displays:

4

Three options are available:
• No XSLT processing required

The XSLT processor is not invoked and the import data file is passed to the
Import tool for loading.

• Pre-configured XSLT file
A drop-list is populated with all the server side XSLT files. These files contain
"standard" XSLT scripts used to transform known XML formats. Selecting this
option and one of the pre-configured entries will result in the XSLT file being
copied from the server to your local machine and executed by the XSLT
processor.

• Local XSLT file
If you want to use an XSLT file that resides on your local machine, choose this
option and browse to the file.

4. To use the XSLT processor choose the second or third option and select Next.
The XSLT Output screen will display:

 5

Two options are available:
• Import XML file

The output of the XSLT processor (the transformed XML) is fed into the
Import facility for loading. The transformed XML is saved in a temporary file
used by the Import tool. All error messages relating to the import refer to this
temporary file. The name of the temporary file can be determined by using the
Verbose option on the Logging screen. The temporary file is not removed until
the Finished button is clicked on the Importing screen.

• Save XML file
If you only want to run the XSLT processor and view the output of the
transformation, use this option to select the name of the file into which the
generated XML will be saved. The data import phase will not be run.

If Save XML file is selected, the level of logging can be set and the XSLT
processing invoked; if the Import XML file option is selected, the normal Import
sequence is followed (see the Vitalware Help for details).

6

The table below indicates when the XSLT processor is invoked and whether the
Import phase is executed:

Option XSLT Import

No XSLT processing required

Pre-configured XSLT File/Import XML file

Pre-configured XSLT File/Save XML file

Local XSLT File/Import XML file

Local XSLT File/Save XML file

When the XSLT processor is run a screen showing the status of the processing is
displayed. Once the transformations are complete the Import phase will begin
automatically for options that require the data to be imported (see the Vitalware
Help for details). If the data is not imported (e.g. saving XML to a file), the
processing screen will indicate that the transformations are complete:

5. When the Finished button is clicked the final screen displays allowing the

generated report to be viewed:

 7

 The Vitalware XSLT processor uses the Microsoft XML libraries (MSXML). In
order to use the XSLT processor it is necessary to have MSXML 3.0 or later
installed (Windows 2000 SP4 or Internet Explorer 6 or later, Windows XP,
Windows Vista, Windows Server 2003).

8

Pre-configured XSLT files

As described above (page 2) it is possible to have pre-configured XSLT files stored on
the Vitalware server. These files are accessible to all users and are listed in the drop-list
below the Pre-configured XSLT file option. The files are stored in a per table directory
in one of two locations:

• etc/import/table
Location of client independent XSLT scripts. These script typically load into the
core Vitalware modules that do not vary from client to client (e.g. Parties,
Multimedia, etc.). Clients should not add scripts to this location as these scripts are
added by KE Software.

• local/etc/import/table
Location of client specific XSLT scripts. Any scripts that transform data for
institution specific modules (e.g. Births, Deaths) should be kept in this location. All
client scripts should be added to this location.

When installing a script on the Vitalware server the local/etc/import/table
directory may not exist, in which case it will be necessary to create it. For example, if
you have a script called "TRANSFORMBTH.xslt" that transforms the XML for loading
into your Vitalware Births module, you would store it under:

local/etc/import/ebirths/TRANSFORMBTH.xslt

The entry that appears in the drop-list in the Import wizard is the name of the file
without its file suffix (e.g. TRANSFORMBTH for TRANSFORMBTH.xslt). The file
name may contain spaces. XSLT scripts do not need to have an .xslt suffix, however
this is the extension usually used.

Copyright © 2009 KE Software Pty Ltd
This work is copyright and may not be reproduced except

in accordance with the provisions of the Copyright Act

Vitalware Documentation

FIFO Server
Document Version 1.0

Vitalware Version 2.1

FIFO Server i

Contents
S E C T I O N 1 FIFO Server 1

Overview 1

S E C T I O N 2 Invoking the FIFO server 3
Scripts and command line 4
KE Texpress Validation 5
C++ Client Code 6

S E C T I O N 3 FIFO Server plugins 7

S E C T I O N 4 Standard plugins 13
Work Hours 13
System Lookup 14

S E C T I O N 5 Index 15

 FIFO Server

FIFO Server 1

S E C T I O N 1

FIFO Server

Overview
One issue with using a generic database server is that values often need to be
computed or processes invoked when saving a record. In many cases these
computations occur within the confines of the database server itself. In the case of
KE Texpress (the database engine used by Vitalware) a powerful scripting
language allows values to be computed and data adjusted when a record is saved.
When a command needs to be run, the system() call may be used. In the case
where complex data computations are required, particularly where the computed
values are the result of other table lookups, the system() call provides a useful
solution. The format of the call is:

result = system("command");

The "command" provided as the argument is run and the output returned. Where
values are computed, the output is assigned to one or more columns. If a process is
invoked (for example printing a specimen label), the output may be empty. The
system() call provides a useful mechanism for allowing external programs to be
invoked.

Similar functionality is available through the C++ TexVCL objects used by the
client. The KESession object provides the Execute() method:

status = Session->Execute("command", output, error);

where:

 command is the program to be executed.
 status is the exit status of the command (zero indicates the command

completed successfully).
 output is an AnsiString that receives any output sent to stdout.
 error is an AnsiString that receives any output sent to stderr.

Most script languages provide a mechanism for invoking commands from within
the script itself and capturing the output (e.g. perl has a system() call and also
provides back ticks).

The problem with invoking a command to start a process or to generate values is
the expense in terms of computing resources. Each command invoked needs to
learn about its environment (e.g. if a database table is consulted, the table schema
needs to be loaded each time the command is called). Also, due to the way
commands are started in a UNIX environment (via the fork() call), commands
invoked by large programs (e.g. texserver) start up slowly. It is this combination of
slow start up and the constant reloading of the environment that may result in a
high load being placed on the server machine.

FIFO Server Overview

2 FIFO Server

The FIFO service was introduced in KE Vitalware 2.1.01 to address these two
issues:

• The first is addressed by removing the need to start a new command.
Instead the FIFO server provides mechanisms where KE Texpress, C++ client
code and scripts can ask the FIFO server to perform some function. Similar to
command execution, the return value is sent back to the caller. The big
difference however is that the FIFO server is running all the time, rather than
starting each time a request is made. This removes the need for a command to
be started.

• The second issue is addressed by the FIFO server providing access to resident
database servers, rather than starting a new database server each time data is
required. As the database servers are resident, the schema is only read when the
database server is first loaded.

Using the FIFO server dramatically increases the rate at which commands can be
executed, while lowering the overall load placed on the server. The FIFO server
has been designed to be extensible by adding plugins that provide new
functionality.

 FIFO Server

FIFO Server 3

S E C T I O N 2

Invoking the FIFO server
The FIFO server requires two pieces of information and returns one. The two
pieces of information required as input are:

 plugin The name of the function inside the FIFO server to be invoked. The
name can consist of any characters except a newline character. It is
normally descriptive (e.g. Work Hours to invoke the Work Hours
calculator).

 data Information forwarded to the plugin used to compute values or start
processes. For example the data:

27/11/2009,10:00:00|03/12/2009,12:30:00

supplied to the Work Hours plugin provides two dates and times
(the first set is the Start Date & Time, the second set is the End Date
& Time) for which the Work Hours are to be calculated. The format
of the input data is plugin dependent.

The information returned is the computed value. The format of the data returned
depends on the plugin invoked. For example, the value returned for the above
Work Hours input is (based on the default values discussed later on page 13):
4|2|30|0

Where the first value (4) represents the no. of Work Days, the second value (2) is
the no. of Work Hours, the third value (30) is the no. of Work Minutes and the
fourth value (0) is the no. of Work Seconds.

Only one instance of the FIFO server runs for a given client environment. All
users access this instance when requests are made of the FIFO server. In order to
ensure that all requests are handled serially, a simple file locking mechanism is
used. This guarantees that the correct output is received for the input provided.

The FIFO server is installed as a background load. The vwload command is used
on the server to control access:

To start the FIFO server use:
vwload start fifo

To check the status of the server use:
vwload status fifo

To stop the server use:
vwload stop fifo

Invoking the FIFO server FIFO Server

4 FIFO Server

Scripts and command line

The command vwfifo is used to invoke the FIFO server from the command line
or from within a script. Its usage message is:
Usage: vwfifo plugin [data]

where

 plugin name of fifo plugin to invoke

 data data passed to fifo plugin [default: stdin]

For the Work Hours plugin example above, the following command could have
been used:
vwfifo “Work Hours” << EOF

27/11/2009,10:00:00|03/12/2009,12:30:00

EOF

4|2|30|0

The data may also be supplied as an argument:
vwfifo “Work Hours” "27/11/2009,10:00:00|03/12/2009,12:30:00"

4|2|30|0

giving the same response. vwfifo is often used to debug new plugins.

FIFO Server Invoking the FIFO server

FIFO Server 5

KE Texpress Validation
The FIFO server may also be invoked from within KE Texpress. When a record is
saved, a validation handler is run. The handler checks for consistent data but may
also be used to compute values. The following code segment shows how to invoke
the FIFO server from within the validation handler:
/* FIFO settings.
*/
fifoin = getenv("VWPATH") . "/loads/fifo/input";
fifoout = getenv("VWPATH") . "/loads/fifo/output";
fifolock = getenv("VWPATH") . "/loads/fifo/lock";

/* "System Yes" value
*/
if ((YES = getenv("SYSYES")) == "")
{
 YES = fifo(fifoin, fifoout, fifolock, "System
Lookup\nSystem Yes");
 setenv("SYSYES", YES);
}

The fifo() call is used to communicate with the FIFO Server. Its arguments are:

 fifoin The path to the input side of the FIFO server. The name of
the plugin and data are written to this file (the file is actually
a named pipe created when the server is invoked).

 fifoout The path to the output side of the FIFO server. The results
are read from this file (the file is also a named pipe created
when the server is invoked).

 fifolock The path to an empty file used as a lock to ensure that only
one process can access the FIFO server at a time. The
locking ensures that correct results are returned for a given
request.

 fifovalue The information to be forwarded to the FIFO server. The
first line must contain the name of the plugin to be invoked.
All remaining lines are passed to the plugin as data.

The code above calls the System Lookup plugin (which returns the value
associated with the name of the lookup list supplied as data), asking for the value
of the System Yes table. The returned value is remembered so it only needs to be
looked up once. The values for fifoin, fifoout and fifolock defined above
should always be used. Care should be taken with values returned by the FIFO
server. In many cases the return value may have a trailing newline character that
may need to be removed.

Invoking the FIFO server FIFO Server

6 FIFO Server

C++ Client Code
A new method has been added to the KESession object that communicates with
the FIFO server. The method is:
AnsiString

__fastcall

KESession::Fifo(AnsiString fifoin, AnsiString fifoout, AnsiString
fifolock, AnsiString fifovalue)

The arguments are the same as for the Texpress validation call. The return value is
the information sent back from the FIFO server. In order to provide easier access
to the server, a new method has been added to the base window class TBaseFrm
that invokes Fifo() with the correct paths. The method is:
AnsiString

__fastcall

TBaseFrm::FifoServer(AnsiString plugin, AnsiString data)

The simplified version only requires the name of the plugin to invoke and any data
to be passed to it. For example to get the value of the System Yes lookup list, the
following call could be used:
AnsiString results = FifoServer("System Lookup", "System Yes");

 FIFO Server

FIFO Server 7

S E C T I O N 3

FIFO Server plugins
The FIFO server is designed to be extensible. In fact the server itself just provides
a framework without any services built in. All services are provided by plugins
that are loaded when the FIFO server is started. A plugin is really just a perl
library that contains a registration function used to define what plugin types are
handled. The standard plugins are located in etc/fifo, while client specific plugins
can be found in local/etc/fifo. When the FIFO server starts it looks in both the
standard and local directories for all files with a .pl extension (a perl library). The
file is loaded and the Register() function invoked to determine what plugins are
handled by the script.

The shell of a plugin looks like:
#!/usr/bin/perl

Copyright (c) 1998-2009 KE Software Pty Ltd

use strict;
use warnings;
no warnings 'redefine';

Registration function.

sub
Register
{
 my $plugins = shift;

 #
 # We handle the "Plugin Name" method.
 #
 $plugins->{"Plugin Name"} = \&Plugin;
}

The handler for the "Plugin Name" plugin

sub
Plugin
{
 my $plugin = shift;
 my $data = shift;

FIFO Server plugins FIFO Server

8 FIFO Server

 #
 # Plugin code
 #
}

1;

The Register subroutine is called by the FIFO server passing in a reference to a
hash. It is necessary to add the following to the hash:

• The name of the plugin to be handled.
• A reference to the function to invoke when the plugin is called.

As many different handlers as required may be registered within the one plugin.
When a call is made to the FIFO server and the plugin name matches the one
registered, the corresponding plugin subroutine is called. Two arguments are
supplied to the plugin subroutine:

• The plugin name that matched.
• A reference to a list of input lines (where the newline has been removed from

each line).

Any value returned by the handler is sent back to the caller.

An example may make things clearer. Let's create a local plugin that provides two
functions:

• Addition, which will add up all the numbers supplied as data.
• Multiplication, which will multiply the numbers supplied.

The plugin will be placed in local/etc/fifo/math.pl. The code is:
#!/usr/bin/perl

Copyright (c) 1998-2009 KE Software Pty Ltd

use strict;
use warnings;
no warnings 'redefine';

Registration function.

sub
Register
{
 my $plugins = shift;

 #
 # We handle the "Addition" and “Multiplication” method.

FIFO Server FIFO Server plugins

FIFO Server 9

 #
 $plugins->{"Addition"} = \&Addition;
 $plugins->{"Multiplication"} = \&Multiplication;
}

The handler for the "Addition" plugin

sub
Addition
{
 my $plugin = shift;
 my $data = shift;
 my $total = 0;

 #
 # Add up the values supplied
 #
 foreach my $value (@{$data})
 {
 $total += $value;
 }
 return($total);
}

The handler for the "Multiplication" plugin

sub
Multiplication
{
 my $plugin = shift;
 my $data = shift;
 my $total = 1;

 #
 # Add up the values supplied
 #
 foreach my $value (@{$data})
 {
 $total *= $value;
 }
 return($total);
}

1;

Notice that the Register subroutine adds two handlers (one for Addition and one
for Multiplication). Associated with each handler is the subroutine to call when

FIFO Server plugins FIFO Server

10 FIFO Server

the handler is matched (Addition and Multiplication respectively). Next we
restart the FIFO server (using vwload stop fifo and vwload start fifo).
Now we can use vwfifo to test our plugin:
vwfifo Addition << EOF
1
2
3
4
EOF
10
vwfifo Multiplication << EOF
1
2
3
4
EOF
24

Although the example above is trivial it does present the basics involved in setting
up a new plugin. In many cases the plugin needs to access data stored in a KE
Texpress table. In this case the plugin can use either OldServer() to get a
reference to a texql object (as defined in texql.pm) or NewServer() for a
reference to a texapi object (as defined in texapi.pm). Using either of these
objects you can retrieve data from existing tables and use it to build the result. As
an example the plugin below determines whether a Birth IRN has any Death
attached:
#!/usr/bin/perl

Copyright (c) 1998-2009 KE Software Pty Ltd

use strict;
use warnings;
no warnings 'redefine';

Registration function.

sub
Register
{
 my $plugins = shift;

 #
 # We handle the "Has Death" method.
 #
 $plugins->{"Has Death"} = \&Death;

FIFO Server FIFO Server plugins

FIFO Server 11

}

The handler for the "Has Death" plugin

sub
Death
{
 my $plugin = shift;
 my $data = shift;
 my $texql;
 my $row;

 #
 # Check if we have any records.
 #
 $texql = OldServer();
 $texql->Command(
 "select all from ebirths where DeathRegistration is
not NULL”;

 #
 # Get the result
 #
 $row = $texql->Row();
 $texql->Finish();

 #
 # Return the result
 #
 return(defined($row) ? "Yes" : "No");
}
1;

 FIFO Server

FIFO Server 13

S E C T I O N 4

Standard plugins
The FIFO server provides two standard plugins as part of the Vitalware 2.1.01
distribution. These are:

• Work Hours
• System Lookup

Work Hours
The Work Hours plugin returns the total work time elapsed between the Start
Date/Time and the End Date/Time. It uses the following registry entries to
determine the work hours:

Group|Default|Table|eorders|Daily Business Hours|0|Value

Group|Default|Table|eorders|Daily Business Hours|1|Value

Group|Default|Table|eorders|Daily Business Hours|2|

Group|Default|Table|eorders|Daily Business Hours|3|

Group|Default|Table|eorders|Daily Business Hours|4|

Group|Default|Table|eorders|Daily Business Hours|5|

Group|Default|Table|eorders|Daily Business Hours|6|

Group|Default|Table|eorders|Business Day Length|

System|Setting|Public Holidays|

The following default values will be used in case the above registry entries are not
found:

Group|Default|Table|eorders|Daily Business Hours|0|00:00-00:00

Group|Default|Table|eorders|Daily Business Hours|1|08:00-17:00

Group|Default|Table|eorders|Daily Business Hours|2|08:00-17:00

Group|Default|Table|eorders|Daily Business Hours|3|08:00-17:00

Group|Default|Table|eorders|Daily Business Hours|4|08:00-17:00

Group|Default|Table|eorders|Daily Business Hours|5|08:00-17:00

Group|Default|Table|eorders|Daily Business Hours|6|10:00-14:00

Group|Default|Table|eorders|Business Day Length|09:00

System|Setting|Public Holidays|10/03/2008;30/06/2008;25/12/2008

 vwfifo "Work Hours" "27/11/2009,10:00:00|03/12/2009,12:30:00"

 4|2|30|0

Standard plugins Overview

14 FIFO Server

System Lookup
The System Lookup plugin returns the text value for a given system lookup list.
The name of the lookup list is supplied as input and the language dependent value
is returned.
vwfifo "System Lookup" "System Yes"

Yes

Index
C

C++ Client Code • 6

F
FIFO Server • 1

FIFO Server plugins • 7

I
Invoking the FIFO server • 3

K
KE Texpress Validation • 5

O
Overview • 1

S
Scripts and command line • 4

Standard plugins • 13

System Lookup • 14

 W
Work Hours • 13

Copyright © 2009 KE Software Pty Ltd
This work is copyright and may not be reproduced except

in accordance with the provisions of the Copyright Act

Vitalware Documentation

Configuration
Document Version 1.0

Vitalware Version 2.1

 3

Contents
S E C T I O N 1 KE Vitalware Configuration 5

Overview 5
The Basic Theory 6

Coding Scheme 6
Superimposed Scheme 7
False Matches 8
Calculating k and b 8

Record and Segment Descriptors 12
Calculating a value for Nr 12
Bit Slicing 14
False match probability 15

What is an atom? 16
Atoms per record 18
Summary of variables 23
Configuration tools 24

texanalyse 24
texdensity 26
texconf 28

Setting configuration parameters 30

 4

 5

KE Vitalware Configuration
• Overview
• The Basic Theory
• Record and Segment Descriptors
• What is an atom?
• Atoms per record
• Summary of Variables
• Configuration tools
• Setting configuration parameters

Overview

Texpress 8.2.01 has seen an overhaul of the configuration tools used to provide optimal
indexing for Texpress tables. Trying to achieve optimal performance for a given table has
been a bit of a black art due to the simplistic approach to automatic configuration taken by
earlier versions of Texpress. As a result less than optimal performance has been noticed,
particularly for very large data sets. In many instances manual configuration was the only
way to get near optimal performance. Most configuration issues resulted from assumptions
that were applicable for data sets with a normal distribution of record sizes, but which did not
hold for the diverse data sets found in a "normal" Vitalware installation. In particular, where
data has been loaded from a number of disparate legacy systems the distribution of record
sizes does not follow a single normal distribution, but resembles a number of normally
distributed data sets, one per legacy system, overlaying each other. The histogram below
shows an example distribution of record sizes for the Parties module:

As you can see the distribution of record sizes does not follow a normal distribution.
However if you look closely you will notice the histogram is made up of three normal
distributions, with centres at 105, 115 and 125, superimposed on each other. Each of these
distributions reflects data from a legacy system, so in fact we have three different data
sources where each data source is distributed normally, but the combined data set is not!

Prior to Texpress 8.2.01 the automated configuration tools assumed that the data set followed
a normal distribution and produced indexes based around this assumption. The end result was
that for non normal distributed data sets poor indexing parameters were used, leading to slow
response times and excessive false matches. The new configuration facility attempts to cater
for all distributions of data sets while still providing optimal querying speed with minimum
disk usage. The rest of this document will take a close look at the input parameters to the
configuration process as a solid understanding of these values allows targeted manual
configuration if it should be required. First of all we need to start with the basics.

The Basic Theory

Texpress uses a Two Level Superimposed Coding Scheme for Partial Match Retrieval as its
primary indexing mechanism. In this section I would like to explore what we mean by
Superimposed Coding Scheme and look at the variables that affect optimal configuration. The
scheme is made up of two parts: the first is a coding scheme, and the second is the
superimposing mechanism. In order to demonstrate how these strategies function, a working
example will be used. For the example we will assume we have a simple Vitalware Parties
record with the following data:

Field Name Value
First Name Boris
Surname Badenov
City FrostBite Falls
State Minnesota

Coding Scheme

The first part of the indexing algorithm involves encoding each of the field values into a bit
string, that is a sequence of zero and one bits. Two variables are used when encoding a value.
The first is k, which is the number of 1s we require to be set for the value and the second is b,
which is the length of the bit string. The variables b and k are the first two inputs into the
configuration of the indexing mechanism.

To encode a value we use a pseudo random number generator. We need to call the generator
k times where the resulting value must be between 0 and b - 1. For each number generated
we convert the bit position to a 1. The important feature of a pseudo random number
generator is that if we provide the same inputs (that is the same k, b and value), then the same
k numbers will be generated, thus the same inputs will always produce the same outputs.
Suppose we use k=2 and b=15 to encode our sample record. The table below shows example
bit strings generated for the given b and k values:

Value Bit Positions Bit String
Boris 3, 10 00010 00000 10000
Badenov 1, 4 01001 00000 00000
FrostBite 3, 7 00010 00100 00000
Falls 8, 14 00000 00010 00001
Minnesota 4, 9 00001 00001 00000

Notice how the two words in the City field are encoded separately. It is this separate encoding
that provides support for word based searching, that is, searching where only a single word is

 6

specified. The pseudo random number generator used by Texpress also takes one other input,
the column number of the value being indexed. The reason for this input is that the same
word in different columns should result in different bit strings, otherwise a search for the
word would find it in all columns (this is how the Texpress Also Search facility is
implemented, where each Also Search column uses the same column number, that of the
originating column).

Superimposed Scheme

Once all the bit strings are generated they are OR-ed together to produce the final bit string.
The bit string is known as a record descriptor as it contains an encoded version of the data in
the record, in other words it describes the contents of the record in the form of a bit string.
Using our example the resulting record descriptor would be:

00010 00000 10000 OR
01001 00000 00000
00010 00100 00000
00000 00010 00001
00001 00001 00000

01011 00111 10001

 7

False Matches

The indexing scheme used by Texpress can indicate that a record matches a query when in
fact it does not. These false matches are due to the encoding mechanism used. When a query
is performed the query term is encoded into a bit string as described above. The resulting
record descriptor, generally known as a query descriptor, is AND-ed with each record
descriptor and where the resultant descriptor is the same as the query descriptor, the record
matches (that is, the record descriptor has a 1 in every position the query descriptor has a 1).
Using our example above, let's assume we are searching for the term Boris. We encode the
term and compare it against the record descriptor:

00010 00000 10000 AND (Boris query descriptor)
01011 00111 10001 (Record descriptor)

00010 00000 10000 (Resultant descriptor)

Since the resultant descriptor is the same as the query descriptor the record is flagged as a
match. Now let's consider searching for Natasha. In order to demonstrate a false match, let's
assume Natasha is encoded as follows:

Value Bit Positions Bit String
Natasha 7, 9 00000 00101 00000

When we perform our search we get:

00000 00101 00000 AND (Natasha query descriptor)
01011 00111 10001 (Record descriptor)

00000 00101 00000 (Resultant descriptor)

As you can see the query descriptor is the same as the resultant descriptor so it looks like the
record matches, except that the record for descriptor 01011 00111 10001 does not contain
Natasha. This is known as a false match. In order to "hide" false matches from users,
Texpress checks each record before it is displayed to confirm that the record does indeed
contain the specified search term(s); if not, the record is removed from the set of matches.

The reason for false matches is that a combination of the bits set for a series of terms in a
record results in 1s appearing in the same positions as for a single term. Using our example
you can see that Frostbite sets bit seven and Minnesota contributes bit nine, which happen to
correspond to the bits set by Natasha. In order to provide accurate searching we need to
minimise the number of false matches.

Calculating k and b

Now that we have had a look at how the superimposed coding scheme works, that is by
translating the contents of a record into a record descriptor, we need to investigate how to

 8

calculate k (number of bits to set to 1s per term) and b (length of the bit string). The first
variable we will look at is k. In order to calculate k we need to introduce two new variables:

d The bit density is the ratio between the number of 1 bits set and the length of the
descriptor. The value is expressed as a percentage. For example a bit density of 25%
indicates that one in four bits will be 1 with the other three being zero when averaged
over the whole record descriptor. If we use our example record descriptor of 01011
00111 10001, there are eight 1 bits set out of a total of 15 bits, which gives a bit
density of 8/15 or 53%. Texpress uses a default bit density value of 25%.

f The false match probability is the number of record descriptors we need to examine to
get a false match. For example, a value of 1024 indicates that we expect to have one
false match for every 1024 record descriptors checked when searching. Using this
variable we can configure the system to provide an "acceptable" level for false
matches. Texpress uses a value of 1024 for the false match probability for record
descriptors.

The number of bits we need to set for a term is related to both the false match probability and
the bit density. If we use a bit density of 25%, one in four bits is set to 1 in our record
descriptor. This implies the probability of any given bit being a 1 is 1/4. If we set k to be 1,
that is we set one bit per term, the probability that the bit is already set is 1/4. If we set two
bits (k=2), the probability that both bits are set is 1/4 * 1/4 = 1/16. The table below gives
more details:

k Probability all bits set to one Value
1 1/4 1/4
2 1/4 * 1/4 1/16
3 1/4 * 1/4 * 1/4 1/64
4 1/4 * 1/4 * 1/4 * 1/4 1/256
5 1/4 * 1/4 * 1/4 * 1/4 * 1/4 1/1024
6 1/4 * 1/4 * 1/4 * 1/4 * 1/4 * 1/4 1/4096

If the false match probability is set to 1024 (as used by Texpress), you can see from the above
table we need to set k to 5. The reason five is selected is that in order to get a false match we
need to have all the search term bits set to one, but not contain the term. Hence if k is five we
have a one in 1024 chance that a record descriptor will match incorrectly. If we decrease the
bit density to say 12.5% or one bit in eight set, a k value of four is sufficient, as shown in the
table below:

k Probability all bits set to one Value
1 1/8 1/8
2 1/8 * 1/8 1/64
3 1/8 * 1/8 * 1/8 1/512
4 1/8 * 1/8 * 1/8 * 1/8 1/4096

It is easy to see that if we decrease the bit density (d), we also decrease the value of k. We
can express the relationship between k, f and d as:

f = (100 / d)k

 9

With a bit of mathematics we can isolate k from the above formula, giving:

k = log(f) / log(100 / d)

Now that k is calculated we can use it to work out the value of b (the length of the bit string).
We need to introduce one new variable in order to calculate b:

i The number of indexed atoms per record defines how many values are to be encoded
into the record descriptor. In our example the value of i is five as we have five terms
encoded in the record descriptor (Boris, Badenov, Frostbite, Falls, Minnesota). The
value of i depends on the data within a record, which can vary from record to record.
We will revisit i later when we look at how to determine a suitable value.

Using the value of i we can calculate the value of b. Using a simplistic approach we could
take the value of k (bits to set per term) and multiply it by i (number of terms) to get the
number of bits set to a 1. If we assume d (bit density) of 25%, we need to multiply the
number of 1s set by four to get the value of b. Expressed as a formula, this is (i * k * (100
/ d)). Using our example we would have:

5 * 5 * (100 / 25) = 100 bits

 10

So for our sample record we would have the following configuration:

Variable Description Value
f False match probability 1024
d Bit density 25%
i Indexed terms per record 5
k Bits set per term 5
b Length of bits string (in bits) 100

In fact the formula used to calculate b is a bit simplistic. It is useful as an approximation,
however it is not completely accurate. When we build the record descriptor for a record we
use the pseudo random number generator to compute k bits per term. If we have i terms, we
call the pseudo random number generator i times, once for each term. Each term will set k/b
bits. Thus for each term the probability that a bit is still zero is (1 - k/b), so for i terms the
probability that a bit is still zero is (1 - k/b)i. From this the probability that a bit is
therefore 1 must be (1 - (1 - k/b)i). We also know the probability of a bit being 1 must
be (d / 100), that is the number of one bits based on the bit density. So we end up with:

1 - (1 - k/b)i = d / 100

Now with a bit of mathematics we can isolate b from the above formula, giving:

b = k / (1 - exp(log((100 - d) / 100) / i))

Using the above formula for b with our example record we end up with a value of 90 bits
rather than the 100 calculated using the simplistic method. If you did not understand the way
b was calculated, it is not important, except to say that Texpress uses the latter formula when
determining b. Now that we have the key concepts in place and have examined the variables
used to calculate the number of bits to set per term (k) and the length of the bit string (b) we
need to consider what we mean by Two Level when we talk about a Two Level Superimposed
Coding Scheme for Partial Match Retrieval.

 11

Record and Segment Descriptors

As you can imagine, an indexing scheme that is two level must have two parts to it and, in
fact, this is the case. Fortunately the two parts are very similar with both parts using the
theory covered in the last section. The first level is the segment descriptor level and the
second is the record descriptor level:

Segment
Descriptor

A segment descriptor is a bit string that encodes information for a fixed
number of records. It uses the theory discussed above, except that a single
segment descriptor describes a group of records rather than a single record.
The number of records in a segment is part of the system configuration and
is known as Nr. A typical value for Nr is around 10. Segment descriptors
are stored sequentially in the seg file under the database directory, that is,
the first segment descriptor encodes the first Nr records, the second the
next Nr records and so on.

Record
Descriptor

The record descriptor level contains one record descriptor per record.
Record descriptors are grouped together into lots of Nr with the lots stored
one after another in the rec file under the database directory.

The table below shows the relationship between segment descriptors and record descriptors
where Nr is 4:

Record Descriptor 1
Record Descriptor 2
Record Descriptor 3

Segment Descriptor 1

Record Descriptor 4
Record Descriptor 5
Record Descriptor 6
Record Descriptor 7

Segment Descriptor 2

Record Descriptor 8
… …

The segment descriptors are consulted first when a search is performed. For every matching
segment descriptor the corresponding Nr record descriptors are checked to find the matching
record(s). For each segment descriptor that does not match, the associated Nr record
descriptors can be ignored. In essence we end up with a scheme that can very quickly discard
records that do not match, leaving those that do match.

Calculating a value for Nr

It may be tempting to set the number of records in a segment to a very large number. After all
if the segment descriptor does not match, it means Nr records can be discarded quickly. To a
point this is correct. However the larger the number of records per segment, the higher the
probability that a given segment will contain a match. For example, let's say we have 100
records per segment. The data for 100 records is encoded in each segment descriptor and
record descriptors are grouped in lots of 100. Now let's assume we have 500 records in our
database and we are searching for a term that will result in one match. It is clear in this case
that only one segment descriptor will match (assuming no false matches), so we need to

 12

search through 100 record descriptors to find the matching record. If the number of records
per segment was 10, we would still get one match at the segment level, however we would
only need to look through 10 record descriptors to find the matching record.

Setting the number of records per segment trades off discarding a large number of records
quickly (by setting the value high) against the time taken to search the record descriptors in a
segment if the segment matches (setting the value low). Also, multi-term queries need to be
considered. Since a segment descriptor encodes terms from a number of records, a multi-term
query that contains all the query terms spread across the records in the segment will match at
the segment level, forcing the record descriptors to be checked. For example, if the search
terms were red and house and the first record in a segment contained the word "red", while
the third record contained the word "house", then the segment descriptor would match (as it
encodes both words). The record descriptors are then consulted to see if any records contain
both terms. Since a matching record does not exist in the segment, time has been "wasted"
looking for a non-existent match.

When determining the best value for the number of records in a segment it is important to
understand how the database will be queried. In particular, if a lot of single term searches are
expected, it makes sense to have a reasonably large number of records per segment (say
around 20-50). If multi-term searches are used and the search terms are either related or
distinctive (that is, they do not occur in many records), the value may also be high.

If, however, multi-term queries will contain common non-related terms, a smaller value for
records per segment is required. For example, the Vitalware Parties module contains records
that have many common terms. Consider searching for all marriage celebrants in London
(that is Role=marriage celebrant and City=Glenorchy). There are probably a lot of records
where the role field contains marriage celebrant, similarly many records may have a city
value of Glenorchy. However, there may not be many records that contain both terms. If the
number of records per segment is set high, a large number of segment matches will occur
(because at least one record in the segment has a role of marriage celebrant and at least one
other record in the segment has a city value of Glenorchy). In this case it is better to set the
number of records per segment to be low, say around 10. The Texpress configuration facility
will use a value close to 10 for the number of records per segment as this provides a general
purpose index without knowledge of the data and expected queries.

There is one other variable used when determining the number of records in a segment and
that is the system blocksize:

blocksize The blocksize is the number of bytes that are read or written at one time when a
filesystem is accessed. All filesystem disk accesses occur using this fixed
number of bytes. Even if you read one byte, the underlying filesystem will still
read blocksize bytes and return the single byte to you. The blocksize of a
filesystem is defined when the filesystem is created. Common blocksizes are
1024, 4096 or 8192 bytes. Texpress assumes a default blocksize of 4096 bytes.

In order to provide efficient searching it is important to ensure that all disk activity occurs in
multiples of the filesystem blocksize. So, when selecting the number of records in a segment
we need to make sure that the value selected fills an integral number of blocks. If we use our
example, we saw that the value for b (length of the bit string) was 90 bits or 12 bytes
(rounding up). If we have a blocksize of 4096 bytes, we can fit 341 (4096/12 rounded down)

 13

record descriptors in one disk block. So for our sample data the value for Nr would be 341.
As our example has only five terms in it this leads to a very high value. In practice, records
contain many more terms so the number of records per segment is generally around 10 by
default.

Bit Slicing

The final piece of the indexing puzzle is the use of bit slicing to provide a fast mechanism for
searching the segment descriptor file. As discussed, a segment descriptor encodes
information from Nr records into one descriptor. The descriptors are stored one after the other
in the seg file in the database directory. When a query is performed the first step is to search
each segment descriptor AND-ing it with the query segment descriptor to see if it matches.
When we get a match we then check the record descriptors in the same way. The problem
with this approach is that the seg file can be very large and searching through it sequentially
can take some time. The diagram below shows a series of segment descriptors and a query
descriptor used for searching:

1 0 1 1 0 1 1 0 1 0 … (Segment Descriptor 1)
0 1 0 1 0 0 1 1 0 0 … (Segment Descriptor 2)
1 1 1 0 0 0 0 1 0 1 … (Segment Descriptor 3)
0 0 0 1 1 0 0 1 1 0 … (Segment Descriptor 4)
… (Segment Descriptor N)

0 0 1 0 0 0 1 0 0 0 … (Arbitrary Query Segment Descriptor)

It may be obvious from the table above that in order for a segment descriptor to match the
query segment descriptor it requires a 1 bit in each position that the query descriptor has a 1
bit. The other bits in the descriptor are irrelevant. Using this piece of information the fastest
way to determine what segment descriptors match is to read slices of the segment descriptors.
Where the query segment descriptor has a 1 bit we read a slice (that is one bit from each
segment descriptor). The slice is represented by the yellow area enclosed within the lines in
the diagram. If we read a slice for each query descriptor 1 bit and AND them together, any
resulting 1 bit must contain the position of a segment descriptor that has all 1 bits set as well.
In the example above only segment descriptor 1 matches the query segment descriptor.

The problem with this approach is that reading individual bits from a filesystem is extremely
inefficient. You may notice however that if we "flip" the segment descriptor file on its side,
each slice can now be read with one disk access. The table below shows the segment
descriptors "flipped":

 14

1 0 1 0 …
0 1 1 0 …
1 0 1 0 …
1 1 0 1 …
0 0 0 1 …
1 0 0 0 …
1 1 0 0 …
0 1 1 1 …
1 0 0 1 …
0 0 1 0 …

If we take the slices we need to check and AND them, then where a 1 bit is set in the
resulting slice that segment number matches the query segment descriptor:

1 0 1 0 … AND
1 1 0 0 …

1 0 0 0 …

From our original configuration we know that we set k bits per term, so if a single term query
is performed we need to read k bit slices to determine what segments match the query. The
bit slicing of the segment file is the reason why Texpress has exceptional query speed.

One issue with bit slicing the segment descriptor file is that in order to store the bit slices
sequentially we need to know the length of a bit slice. We know the length of the segment
descriptor, it is b, so b bit slices are stored in the file; but what is the length of each slice? In
order to determine the length of a bit slice we need to know the capacity of the database, that
is how many records will be stored. Using the number of records per segment (Nr) we can
calculate the number of segments required; we use the symbol Ns to represent this number.
So:

Ns = capacity / Nr

Thus the length of a bit slice in bits is Ns.

False match probability

When the false match probability was introduced it was defined as the number of descriptors
to be examined to get one false match. So a value of 1024 is interpreted as the probability of
one false match every 1024 descriptors examined. Using this measure is not very useful when
configuring a Texpress database because the probability is tied to the capacity of the table
rather than the descriptors examined when searching. In order to address this issue the false
match probabilities used by Texpress are altered to reflect the probability of a false match
when searching the segment file and the probability of a false match in a segment when
searching the record descriptor file. In order to make these adjustments the following
formulae are used:

 15

Probability of a segment level false match = 1 / (fs * Ns)

Probability of a segment false match = 1 / (fr * Nr)

If we look at the first formula we can see that the probability of a false match at the segment
level has changed from one every fs descriptors to one every fs searches. The change removes
the number of segment descriptors from the equation. By doing so, fs is now a constant value
regardless of the number of segment descriptors. A similar change was made to the false
match probability for record descriptors. The number of records per segment was introduced
so that the probability is now the number of segments examined before a false match, rather
than the number of records.

We have spent a good deal of time looking at the fundamentals of the Texpress indexing
mechanism. There is one variable however that requires further investigation as it plays a
large part in the automatic generation of configuration values. The variable is the number of
indexed atoms per record (is and ir).

What is an atom?

An atom is a basic indexable component. Each atom corresponds to one searchable
component in the Texpress indexes. What an atom is depends on the type of the data field.
The table below shows for each supported data type what constitutes an atom:

float integer A single numeric value is an atom.

date Every date value consists of three components (year, month, day).
Each filled component is an atom. For example, if a date field contains
2008/1/1, the number of atoms is three, whereas a date value of
2008/1/ has only two atoms.

time As for dates, time values consist of three components (hour, minute,
second). Each component that has a value is an atom. For example, a
time value of 10:23:15.0 contains three atoms, whereas 10:20
contains two atoms.

latitude
longitude

Latitude and longitude values consist of four components (degree,
minute, second, direction). Each component with a value is an atom.
For example, a latitude of 28:12:12.123:N consists of four atoms,
whereas 28:::N consists of two atoms.

string A string value (rarely used in Vitalware) is a text based value that is
indexed as one atom. The data value has all punctuation removed and
the resulting string forms one component. For example, a string value
of "12.temp.1" would produce an atom of "12 temp 1", which is
indexed as a single value. In order to retrieve string values you must
enter the complete string, rather than just a word.

text For text based data each unique word in the text constitutes an atom. A
word is a sequence of alphabetic or numeric characters delimited by
punctuation (character case is ignored). For example, a text value of
"This is a text value - it contains a series of
words" contains ten atoms (there are eleven words, however "a" is
repeated, so the number of unique words is ten).

 16

If a column can contain a list of values, the number of atoms is the sum of the atoms for each
individual value, with duplicate atoms removed. So, if you have an integer column that
accepts multiple values and the data is 10, 12, 14 and 12, the number of atoms is three (as 12
is duplicated).

The table above reflects what an atom is for the standard data types used by Texpress.
Texpress does, however, provide extra indexing schemes that provide different searching
characteristics. The table below details what constitutes an atom for each of these additional
indexing schemes:

Null Indexing Null indexing provides fast searching when determining
whether a column contains a value or is empty (that is for *, !*,
+ and !+ based wildcard searches). It is available for all data
types. There is one atom per column for all columns that have
null indexing enabled, regardless of whether they contain
multiple values, a single value or are empty.

Partial Indexing Partial indexing provides fast searching where the search term
specifies leading letters followed by wildcard characters (e.g.
a*, fre?, bil[ck]*). It is available for text and string data types.
An atom for partial indexing is the number of unique partial
components (words for text data, the whole value for string
data) for each of the partial terms. For example, consider the
text value "I like lollies.". It consists of three words,
namely:

• I
• like
• lollies

If we are providing partial indexing for one and three characters,
the one character atoms are:

• i
• l

and the three character atoms are:

• lik
• lol

So the number of atoms for partial indexing in the above
example is four. For columns that contain multiple text values
the number of atoms is the sum of the atoms per text value with
duplicate atoms removed.

Stem Indexing Stem indexing provides searching for all words that have the
same root word. This allows users to find a word regardless of
the form of the word (e.g. searching for electric will find
electric, electricity, electrical, electrics, etc.). It
is available for text data types. Stem based indexing uses the
same mechanism as standard indexing, except that the word is

 17

transformed into its root word before being indexed. So the
number of atoms generated is similar to that for normal text
based indexing (except that the number of unique atoms is
lower due to many words having the same root word). So,
hypothetically, the number of atoms for stem indexing is
roughly the same as the number for text based indexing. In
order to reduce the indexing overhead (without losing search
speed) Vitalware fully indexes each stem atom (that is it sets k
bits), but reduces the indexing for the text word to 2 extra bits
per word.

Phonetic
Indexing

Phonetic indexing provides searching for words that sound
similar, that is they contain the same sound groups (e.g. Steph
and Steff are phonetically the same). Phonetic based indexing
works exactly the same as for stem based indexing except that
the sound groups of a word make up the atom rather than the
root word. As with stem based indexing, two extra bits are set
for the text word to provide text based searching.

Phrase Indexing Phrase indexing provides fast searching for phrased based
searches, that is, searches where the query terms are enclosed
within double quotes (e.g. "red house"). It is available for the
text data type. An atom for phrased based searching is the
number of adjacent double word combinations in the textual
data that are not separated by an end of sentence character. For
example, consider the text "I like Lollies. Do you?"
The adjacent double word combinations are:

• I - like
• like - lollies
• do - you

Each of these combinations is an atom, however Vitalware only
sets one bit to provide phrase based searching, rather than the
normal k bits.

Now that we have an understanding of what an atom is, we need to look at how Texpress
computes the number of atoms in a record.

Atoms per record

When explaining the configuration variables used to configure a Texpress table, the number
of atoms per record (i) was glossed over. The working example used a value of five based on
the data found in a single record. In fact, arriving at a value for the number of index terms per
record can be quite involved. It also turns out that the value chosen has a large impact on the
overall configuration of the system (which is to be expected as it plays an important part in
the calculation of b (length of the descriptor in bits)). Texpress 8.2.01 has introduced changes
to the indexing system that track dynamically the number of atoms per record. Using these
changes Texpress can provide very good configurations regardless of the distribution of the
number of atoms per record.

 18

How does Texpress decide on the number of atoms per record? First we need to examine
what is the number of atoms in a record for any given record. Based on the previous section
(What is an atom?) the number of atoms in a given record consists of three numbers:

terms The number of terms for which k bits are set when building the descriptor.
Most atoms fall into this category.

extra The number of extra atoms where two bits are set for the complete word.
Extra atoms result from stem and phonetic searching.

adjacent The number of adjacent atoms where a combination of two words are
indexed together resulting in one bit being set.

Let's consider an example. If we have a record with one text field with stem based indexing
enabled and it contains the text I like lollies do you?, then the breakdown of atoms is:

Index Type Count Bits Set Atoms
terms 5 k i, like, lollies, do, you
extras 5 2 i, lik, lol, do, you
adjacent 4 1 i-like, like-lollies, lollies-do, do-you

In order to arrive at the number of atoms for the record we need to compute a weighted
number of atoms based on the number of bits set. The formula is:

i = (terms * k + extra * 2 + adjacent * 1) / k

So using our example and assuming that k=5, the number of atoms for the sample record is
(5 * 5 + 5 * 2 + 4 * 1) / 5 or 8 (rounded up). Since we have two values for the
number of bits to set per indexed term (ks and kr for segment descriptors and record
descriptors respectively) we end up with two weighted values for the number of atoms: one
for the segment level (is) and one for the record level (ir).

As you can imagine it could be quite time consuming working out the number of atoms in a
record for every record in a table. Texpress makes this easy by storing the three numbers
required to determine i with each record descriptor. When a record is inserted or updated the
counts are adjusted to reflect the data stored in the record. Using texanalyse the atoms for
each record can be viewed. The -r option is used to dump the raw counts:

texanalyse -r eparties
Terms,Extra,Adjacent,RecWeighted,SegWeighted
118,9,14,123,122
126,10,21,132,131
102,3,2,103,103
139,12,39,148,146
130,12,28,137,136
138,15,36,147,145
136,15,36,145,143
…

 19

The first three columns of numbers correspond to the number of terms, extra and adjacent
atoms. The last two numbers are the weighted number of atoms for the record descriptor level
(ir) and the segment descriptor level (is) respectively. These numbers are the raw input used
by Texpress to determine the overall number of atoms to use for configuration.

One approach for arriving at the number of atoms to use for configuration is to take the
average of the weighted number of atoms in each record. In this instance a certain percentage
of records would be below the average value and the rest above. For records with the average
value the bit density of the generated descriptors will be d (25% by default). For records with
less than the average number of atoms, the bit density will be less than d, and for those
greater than the average, the bit density will be greater than d. From our initial calculations:

k = log(f) / log(100 / d)

We need to maintain the bit density (d) at about 25%, given that k is fixed, otherwise the
false match probability drops and false matches are more likely. We need to ensure that the
vast majority of records have a bit density of 25% or less. In order to achieve this we cannot
use the average number of atoms per record, rather we need to select a higher value.

If we calculate the average number of atoms per record and know the standard deviation, we
can use statistical analysis to determine a value for the number of atoms that ensures that
most records are below this value (and so the bit density is below 25%). If the number of
atoms in each record follows a normal distribution, which is generally the case when the data
comes from one source, then analysis shows that 95.4% of records will have a number of
atoms value less than the average plus two times the standard deviation, and 99.7% of records
will have a number of atoms value less than the average plus three times the standard
deviation. Calculating the standard deviation for the number of atoms in each record could
take some time so fortunately texanalyse can be used to determine the value. If texanalyse is
run without options the following output is displayed:

 20

texanalyse eparties
Analysis of Indexed Atoms per Record
====================================

+---------+---------+---------+
| Atoms | Records | Records |
| | (Rec) | (Seg) |
+---------+---------+---------+
93	0	1
94	1	0
95	0	3
96	3	2
97	2	0
98	3	3
99	8	8
100	0	2
101	3	1
102	1	1
103	13	15
104	2198	2223
105	966	976
106	43	290
107	288	94
…		
397	0	0
398	1	0
+---------+---------+---------+

Record Level Analysis
=====================

Total number of records : 50046
Total number of indexed terms : 6169873
Average number of indexed terms : 123.3
Standard deviation : 18.5

Records <= average : 32726 (65.4<= 123.3)
Records <= average + 1 * standard deviation: 46156 (92.2<= 141.8)
Records <= average + 2 * standard deviation: 48310 (96.5<= 160.4)
Records <= average + 3 * standard deviation: 49114 (98.1<= 178.9)
Records <= average + 4 * standard deviation: 49456 (98.8<= 197.4)
Records <= average + 5 * standard deviation: 49638 (99.2<= 215.9)
Records <= average + 6 * standard deviation: 49732 (99.4<= 234.5)
Records <= average + 7 * standard deviation: 49838 (99.6<= 253.0)
Records <= average + 8 * standard deviation: 49938 (99.8<= 271.5)
Records <= average + 9 * standard deviation: 49990 (99.9<= 290.1)
Records <= average + 10 * standard deviation: 50014 (99.9<= 308.6)
Records <= average + 11 * standard deviation: 50027 (100.0<=
327.1)
Records <= average + 12 * standard deviation: 50036 (100.0<=
345.7)
Records <= average + 13 * standard deviation: 50038 (100.0<=
364.2)
Records <= average + 14 * standard deviation: 50044 (100.0<=
382.7)
Records <= average + 15 * standard deviation: 50046 (100.0<=
401.3)

Segment Level Analysis

 21

======================

Total number of records : 50046
Total number of indexed terms : 6112301
Average number of indexed terms : 122.1
Standard deviation : 17.8

Records <= average : 32744 (65.4<= 122.1)
Records <= average + 1 * standard deviation: 46163 (92.2<= 139.9)
Records <= average + 2 * standard deviation: 48306 (96.5<= 157.7)
Records <= average + 3 * standard deviation: 49126 (98.2<= 175.5)
Records <= average + 4 * standard deviation: 49459 (98.8<= 193.2)
Records <= average + 5 * standard deviation: 49645 (99.2<= 211.0)
Records <= average + 6 * standard deviation: 49728 (99.4<= 228.8)
Records <= average + 7 * standard deviation: 49832 (99.6<= 246.6)
Records <= average + 8 * standard deviation: 49938 (99.8<= 264.4)
Records <= average + 9 * standard deviation: 49989 (99.9<= 282.1)
Records <= average + 10 * standard deviation: 50014 (99.9<= 299.9)
Records <= average + 11 * standard deviation: 50027 (100.0<=
317.7)
Records <= average + 12 * standard deviation: 50036 (100.0<=
335.5)
Records <= average + 13 * standard deviation: 50038 (100.0<=
353.2)
Records <= average + 14 * standard deviation: 50044 (100.0<=
371.0)
Records <= average + 15 * standard deviation: 50046 (100.0<=
388.8)

The table under the Analysis of Indexed Atoms per Record heading shows for a given number
of atoms (in the Atoms column) how many records have that number of atoms at the record
level (Records (Rec)) and segment level (Records (Seg)). The Record Level Analysis and
Segment Level Analysis summaries show the average number of atoms and standard deviation
for each level. The table below the standard deviation shows the number of records less than
the average plus a multiple of the standard deviation. The first number in the brackets is the
percentage of records below the value and the number after the equal sign is the number of
atoms. For example, if you take the line:

Records <= average + 3 * standard deviation: 49126 (98.2<= 175.5)

this indicates that 49126 records are below the average plus three times the standard
deviation, which represents 98.2% of the records. The number of atoms represented by the
average plus three times the standard deviation is 175.5. Using this table it is possible to
determine what would be good values for is and ir. Remember that we want most records to
be below the selected value, in most cases over 98%. Using this as a guide, for the above
output a suitable value for ir would be 180 (178.9 rounded up) and for is 175 (175.5 rounded
down). While these may seem to be good values at first glance, it is worth considering the
uppermost extremes as well. For the record level analysis the maximum number of atoms in a
record is 398. If we use a value of 180 for the number of atoms at the record level, this means
that the record with the maximum number of atoms sets 2.2 times the number of bits than a
record with 180 atoms. If we apply this to the bit density, this corresponds to a bit density of
55% (25% * 2.2). If we are using 5 as the value for k (five bits set per atom), then the false
match probability for the record with 398 atoms is:

 22

(55/100)5 ≈ 0.05 or 1/20

Thus the record with 398 atoms has a false match probability of 1/20 rather than the required
1/1024. In general this is an acceptable value provided there are not many records with this
high probability. If, however, the bit density is over 75% for the record with the maximum
number of atoms, it may be worth increasing the value of i so that the density is lowered (by
making i about one third of the value of the maximum number of atoms). In general, this is
only required in extreme cases and tends to arise only where a large number of data sources
are loaded into one table.

The idea of adding a number of standard deviations to the average number of atoms provides
us with our last variable:

v The number of standard deviations to add to the average number of
atoms per record to determine the value of i, commonly called the
variance. Since we have a segment and a record level value for i we also
have a segment and record level value for v. The default value for the
segment level is 2.0, and for the record level 3.0; that is, we add in two
times the standard deviation to calculate the value of is and three times
the standard deviation to calculate ir.

Summary of variables

It may be opportune at this time to summarise the variables used as part of the configuration
of a Texpress database. As Texpress uses a two level scheme, there are two sets of variables,
one for the segment level and one for the record level. The variables with an r subscript apply
to record descriptors, while those with an s subscript are used for segment descriptors:

Variable Description Default value
Ns Number of segment descriptors Calculated from capacity
Nr Number of record descriptors per segment Calculated with minimum of 10
kr Bits to set per term in record descriptor Calculated
ks Bits to set per term in segment descriptor Calculated
br Bit length of a record descriptor Calculated
bs Bit length of a segment descriptor Calculated
fr False match probability for record descriptors 1024
fs False match probability for segment descriptors 4
dr Bit density of record descriptors 25%
ds Bit density of segment descriptors 25%
ir Indexed terms per record descriptor Calculated from data
is Indexed terms per segment descriptor Calculated from data
vr Number of standard deviations to add to average at record level 3.0
vs Number of standard deviations to add to average at segment level 2.0
blocksize Filesystem read/write size in bytes 4096

 23

Configuration tools

Texpress 8.2.01 has a number of tools that provide detailed information about the indexing
mechanism. Three programs are provided, where each focuses on one aspect of system
configuration:

• texanalyse provides information about the number of atoms per record.
• texdensity shows the actual bit density for each segment and record descriptor.
• texconf generates values for calculated configuration variables (k, b, Nr and Ns).

texanalyse

The texanalyse tool allows information about the number of atoms per record to be obtained.
It supports both the record level and segment level. The primary use of texanalyse is to check
that the value used for the number of atoms per record (i) is suitable: in particular to check
the records with the maximum number of atoms per record are within an acceptable range of
i. We define acceptable as within three times the value of i when a bit density (d) of 25% is
used. It is also instructive to use texanalyse to produce the raw data that can be fed to
spreadsheet programs for analysis. The usage message is:

Usage: texanalyse [-R] [-V] [-c|-r] [-s] dbname
Options are:
 -c print analysis in CSV format
 -r print raw data in CSV format
 -s suppress empty rows

If the raw atom data per record is required, the -r option is used:

texanalyse -r eparties
Terms,Extra,Adjacent,RecWeighted,SegWeighted
118,9,14,123,122
126,10,21,132,131
102,3,2,103,103
139,12,39,148,146
…

The output is in CSV (comma separated values) format suitable for loading into a spreadsheet
or database. The data contains the number of term atoms, extra atoms and adjacent atoms for
each record in the table. The weighted number of atoms for the record and segment level is
also given.

It is also possible to export in CSV format the number of records at both the record and
segment levels that have a given number of atoms:

 24

texanalyse -c eparties
Atoms,RecRecords,SegRecords
101,3,1
102,1,1
103,13,15
104,2198,2223
105,966,976
106,43,290
107,288,94
108,93,19
109,536,527
110,15,13
111,6,20
…

The output can be loaded into spreadsheet programs for analysis. The graph below shows the
number of records for each atom count from the above output at the record level:

Producing a graph of the number of records with each atom count provides a useful
mechanism for determining how close the distribution of the number of atoms in a record is
to a normal distribution. In particular it can be used to see whether loading separate data
sources has resulted in a number of normal distributions being overlaid (one per data source).
The graph at the start of this article shows clearly that at least three separate data sources
were loaded into the Parties table.

The final use for texanalyse is to produce a summary detailing the average number of atoms
per record and the standard deviation. A list of the average plus an integral number of
standard deviations is also shown:

 25

texanalyse einvoices
Analysis of Indexed Atoms per Record
====================================

+---------+---------+---------+
| Atoms | Records | Records |
| | (Rec) | (Seg) |
+---------+---------+---------+
| 49 | 17 | 17 |
| 50 | 0 | 0 |
…
| 106 | 0 | 1 |
+---------+---------+---------+

Record Level Analysis
=====================

Total number of records : 1419
Total number of indexed terms : 90309
Average number of indexed terms : 63.6
Standard deviation : 9.4

Records <= average : 1170 (82.5<= 63.6)
Records <= average + 1 * standard deviation: 1244 (87.7<= 73.1)
Records <= average + 2 * standard deviation: 1313 (92.5<= 82.5)
Records <= average + 3 * standard deviation: 1323 (93.2<= 91.9)
Records <= average + 4 * standard deviation: 1418 (99.9<= 101.4)
Records <= average + 5 * standard deviation: 1419 (100.0<= 110.8)

Segment Level Analysis
======================

Total number of records : 1419
Total number of indexed terms : 91805
Average number of indexed terms : 64.7
Standard deviation : 9.8

Records <= average : 1167 (82.2<= 64.7)
Records <= average + 1 * standard deviation: 1243 (87.6<= 74.5)
Records <= average + 2 * standard deviation: 1311 (92.4<= 84.3)
Records <= average + 3 * standard deviation: 1323 (93.2<= 94.1)
Records <= average + 4 * standard deviation: 1417 (99.9<= 103.9)
Records <= average + 5 * standard deviation: 1419 (100.0<= 113.7)

The analysis tables at the end can be used to determine whether the computed number of
atoms per record is suitable. The computed record level value is the average plus three times
the standard deviation and the segment value is the average plus two times the standard
deviation. The standard check is to ensure that the maximum number of atoms is less than
three times the value chosen for i (assuming a bit density (d) of 25%).

texdensity

In order to test the effectiveness of a configuration it is useful to be able to determine the bit
density for all segment and record descriptors. The texdensity utility provides this
functionality. The usage message is:

 26

Usage: texdensity [-R] [-V] [[-cr|-cs] | [-dr|-ds]] [-s] [-nrn -nsn]
dbname
Options are:
 -cr print record descriptor density in CVS format
 -cs print segment descriptor density in CVS format
 -dr print record descriptor density
 -ds print segment descriptor density
 -s suppress empty values
 -nrn scan n record descriptors
 -nsn scan n segment descriptors

If some analysis of the bit density is required, the -cr or -cs option can be used to output in
CSV format the number of bits set and the bit density per record or segment descriptor
respectively:

texdensity -cr einvoices
Index,Bits,Total,Density
0,424,2384,17.79
1,405,2384,16.99
2,404,2384,16.95
3,438,2384,18.37
…

The Index column is the record descriptor index (or segment descriptor index if -cs is used).
The number of bits set is next, followed by the total number of bits that could be set and
finally the bit density as a percentage. In general the bit density should be below the default
value of 25%.

It is also possible to get the average bit density, the standard deviation and the maximum bit
density:

texdensity -ds einvoices
Segment descriptor analysis
===========================

 Descriptor Bits set Total bits Density
+----------+----------+----------+----------+
0	1193	17280	6.90
1	1164	17280	6.74
2	1007	17280	5.83
3	971	17280	5.62
…			
135	0	17280	0.00
+----------+----------+----------+----------+

Number of descriptors : 119
Average density : 4.42
Standard deviation : 1.10
Maximum density : 10.39

The output above shows the summary for the segment descriptors of the einvoices table. As
the maximum density of 10.39 is well below the 25% density required, this indicates that the
value for the number of atoms per record can be lowered. The computed number of atoms per
record at the segment level was 83. If we lower the number of atoms per record

 27

proportionally (83 * 10.39 / 25), the number of atoms to use is 34. After reconfiguring
the number of atoms per record at the segment level to 34, the following density summary
was found:

Number of descriptors : 119
Average density : 10.45
Standard deviation : 2.44
Maximum density : 23.37

Based on this output the number could be lowered further as the average bit density is 10.45
and if we add three times the standard deviation we get 17.77 (10.45 + 3 * 2.44) which is still
well below 25%. The reason segment descriptor bit densities are generally lower than record
descriptor densities is due to the repeating of atoms in all the records that make up the
segment descriptor. In particular, there are a number of fields in Vitalware that contain the
same value for all records in a segment (e.g. Record Status, Publish on Internet, Publish on
Intranet, Record Level Security, etc.). Since every record in the segment has the same value
in these fields we should only count the atom once, however Texpress does not have any
mechanism available for tracking how many atoms are repeated in a segment, so a worst case
scenario is assumed where no atoms are repeated. In general this results in segment descriptor
files that are larger than they need to be. Apart from using more disk space the searching
mechanism is not affected overtly as bit slices are read rather than complete segment
descriptors. It is possible to adjust the number of atoms per record at the segment level,
resulting in some cases with substantial savings in disk space. The next section on setting
configuration parameters details how this is set.

texconf

The texconf utility is a front end program to the Texpress configuration facility. Using
texconf it is possible to alter any of the configuration variables and see the effect it has on the
final configuration (that is the values of Nr, Ns, br, bs, kr and ks). The usage message is:

Usage: texconf [-R] [-V] [-bn] [-cn] [-drn] [-dsn] [-frn] [-fsn] [-mn] [-
irn -isn|-nrn -nsn -vrn -vsn] dbname
Options are:
 -bn filesystem blocksize of n bytes
 -cn capacity of n records
 -drn record descriptor bit density of n
 -dsn segment descriptor bit density of n
 -frn record descriptor false match probability of n
 -fsn segment descriptor false match probability of n
 -mn minimum number of records per segment of n
 -irn record descriptor indexed terms per record of n
 -isn segment descriptor indexed terms per record of n
 -nrn scan n records to determine -ir value
 -nsn scan n records to determine -is value
 -vrn increase -ir value by n standard deviations
 -vsn increase -is value by n standard deviations

A close look at the options will show that most correspond to the variables discussed in this
article. Using the options you can test the effect of changing variables. Running texconf
without any options will generate a configuration based on the default values using the
current database capacity:

 28

texconf einvoices
Index Configuration
===================
Capacity of database (in records) : 1632
Number of segments (Ns) : 136
Number of records per segment (Nr) : 12
Words per segment descriptor : 540
Words per record descriptor : 79
Bits set per indexed term (segment) : 5
Bits set per indexed term (record) : 7

Record Descriptor Configuration
===============================
Records scanned to determine indexed terms : 1419
Average number of indexed terms : 63.6
Standard deviation of indexed terms : 9.4
Standard deviations to increase average : 3.0
Expected number of indexed terms : 92
False match probability : 0.000081 [1 / (1024 * Nr)]
Record descriptor tag length (bits) : 144
Bits set per extra term : 2
Bits set per adjacent term : 1

Segment Descriptor Configuration
================================
Segments scanned to determine indexed terms : 118
Average number of indexed terms : 776.0
Standard deviation of indexed terms : 108.8
Standard deviations to increase average : 2.0
Expected number of indexed terms : 994
Average number of indexed terms per record : 64.7
Standard deviation of terms per record : 9.1
Expected number of indexed terms per record : 82
False match probability : 0.001838 [1 / (4 * Ns)]
Bits set per extra term : 2
Bits set per adjacent term : 1

Index Sizes
===========
Segment size : 4096
Segment descriptor file size : 286.88K
Record descriptor file size : 544.00K
Percent of record descriptor file wasted : 1.56%
Total index overhead : 830.88K

The output is broken up into four areas. The first area (Index Configuration) prints out the
generated configuration values. These values can be entered into the Texpress configuration
screen. The second area (Record Descriptor Configuration) details the settings used when
calculating the record descriptor configuration. The third area (Segment Descriptor
Configuration) shows the values used when calculating the segment descriptor configuration.
The last area (Index Sizes) indicates the size of the index files required for the generated
configuration. The table below shows where each of the configuration variables can be found:

 29

Variable Name in texconf
Ns Number of segments (Ns)
Nr Number of records per segment (Nr)
bs Words per segment descriptor (multiply by 32)
br Words per record descriptor (multiply by 32)
ks Bits set per indexed term (segment)
kr Bits set per indexed term (record)
is Expected number of indexed terms [Segment Descriptor Configuration]
ir Expected number of indexed terms [Record Descriptor Configuration]
fs False match probability [Segment Descriptor Configuration]
fr False match probability [Record Descriptor Configuration]
vs Standard deviations to increase average [Segment Descriptor Configuration]
vr Standard deviations to increase average [Record Descriptor Configuration]

Let's say that after some analysis we decide that the average number of atoms per record at
the segment level should really be 34 instead of 82. We can run:

texconf -is34 einvoices
Index Configuration
===================
Capacity of database (in records) : 1632
Number of segments (Ns) : 136
Number of records per segment (Nr) : 12
Words per segment descriptor : 222
Words per record descriptor : 79
Bits set per indexed term (segment) : 5
Bits set per indexed term (record) : 7
…
Index Sizes
===========
Segment size : 4096
Segment descriptor file size : 117.94K
Record descriptor file size : 544.00K
Percent of record descriptor file wasted : 1.56%
Total index overhead : 661.94K

Notice how the Words per segment descriptor value has decreased to reflect the lower
number of atoms per record. Also the Segment descriptor file size has decreased. Using
texconf you can determine the impact on the size of the index files when configuration
variables are adjusted.

Setting configuration parameters

The final part of this document deals with setting configuration variables on a per database
basis so that future configurations will use the values. The information above is all good in
theory and using the configuration tools you can arrive at optimal indexes in both speed and
size, but it is not much help if the next reconfiguration of the table loses all your settings.
Fortunately Texpress 8.2.01 provides a database file in which you can store your

 30

configuration settings. Settings found in this file override the default values used by
Texpress.

The name of the file in which configuration parameters can be stored is called params. It is
an optional file. The file contents are XML based and contain the configuration variables to
be overridden. A complete listing of the file is (with the default values set):

<params>
 <configuration>
 <blocksize>4096</blocksize>
 <record>
 <atoms></atoms>
 <density>25</density>
 <falsematch>1024</falsematch>
 <variance>3.0</variance>
 <scan></scan>
 </record>
 <segment>
 <atoms></atoms>
 <density>25</density>
 <falsematch>4</falsematch>
 <variance>2.0</variance>
 <scan></scan>
 <minimum>10</minimum>
 </segment>
 </configuration>
</params>

The table below explains the use of each tag:

Tag Description
blocksize The underlying block size used by the filesystem on with the Texpress table is stored.
atoms The number of atoms per record (i).
density Bit density to use. Value between 1 and 99 (d).
falsematch False match probability (f).
variance Number of standard deviations to add to average (v).
scan Number of records to use to calculate atoms.
minimum Minimum number of records per segment.

So if you wanted to alter the number of atoms per record at the segment level to use 33, the
following params file could be used:

<params>
 <configuration>
 <segment>
 <atoms>33</atoms>
 </segment>
 </configuration>
</params>

Values set in the params file are also used by texconf, so running texconf will use 33 for the
number of atoms per record for the segment descriptor. You can use the texconf options to

 31

 32

override the value in the params file (texconf -is40 einvoices will use a value of 40 for
the number of atoms when calculating the length of the segment descriptor).

In most cases the values generated by the new configuration facility will provide near optimal
indexes. In some rare cases it may be necessary to "tune" the configuration parameters to
achieve savings in disk space (particularly at the segment level). If "tuning" is required, it is
better to alter the variance value rather than specifying the number of atoms to use. The
reason is as the database grows the average number of atoms per record will vary. If a
variance is specified, the value for atoms can vary with it. So if we take the case of the
einvoices table which had an average number of atoms of 64.7 and a standard deviation of
9.1, we can set the variance to -3.5 (yes you can use negative variances) to get the number of
indexed terms to be 32. The following params file could be used:

<params>
 <configuration>
 <segment>
 <variance>-3.5</variance>
 </segment>
 </configuration>
</params>

In conclusion, Texpress 8.2.01 introduces a new configuration subsystem that provides
optimal indexes for the vast majority of tables. It also provides a suite of tools that can be
used to check the efficiency of configurations and also generate new ones. Finally it provides
a mechanism where the input variables for table configuration can be adjusted and set for
future configurations.

Copyright © 2009 KE Software Pty Ltd
This work is copyright and may not be reproduced except

in accordance with the provisions of the Copyright Act

Vitalware Documentation

Range Indexing
Document Version 1.0

Vitalware Version 2.1

 3

Contents
S E C T I O N 1 Range Indexing 5

Overview 5
How range indexing works 5
Manual range bucket configuration 8
vwrangeupdate 10
System Maintenance 17

 5

Range Indexing
• Overview
• How range indexing works
• Manual range bucket configuration
• vwrangeupdate

o Number of range buckets
o Bucket selection methods

 Distribution method
 Interval method
 Partition method

o Configuring vwrangeupdate
• System maintenance

Overview

KE Vitalware 2.0.01 saw the addition of new indexing methods to the database engine. In
particular support for NULL indexing (whether a field is empty or not) and PARTIAL
indexing (fast searching for leading characters, e.g. a*) was added. Tools were provided that
allowed System Administrators to configure, via the Vitalware Registry, which fields required
the new indexing methods. The new indexing facilities did not provide a mechanism for
adjusting or tuning range indexes.

KE Vitalware 2.1.01 provides new tools that permit System Administrators to tune the range
indexing used by Vitalware. Support for automatic optimisation of range indexes has also
been added. Using these tools, Vitalware can now provide optimal range indexes with
significantly faster range based searches.

How range indexing works

The range indexing employed by the Vitalware database server is designed to work with the
Two Level Superimposed Coding Scheme for Partial Match Retrieval system used for all
searching. As it is an extension of the standard indexing Vitalware still requires only one set
of index files, thus avoiding the need for costly "join" based queries.

Range indexing is really a series of "mini" indexes on a per field basis. Unlike the Two Level
scheme, where all search terms are placed in the one index, range terms are placed in per field
indexes that are then concatenated to form one range index. Each field index consists of a
number of range buckets. These buckets are used to indicate whether a given value falls
within the bucket or not.
There are two related considerations when establishing range buckets:

1. Data distribution: as best as possible data should be distributed evenly between the
buckets.

2. Logical query ranges. The aim is to minimise the necessity to check a bucket for a
value as checking whether records in a bucket match the query takes time; therefore if
users are likely to search on particular ranges (decades for instance: 1/1/1910 to
1/1/1920) it makes sense to configure range buckets appropriately.

An example may make things clearer. Consider length of the child in the Births or StillBirths
module. Let’s say that the length of child is generally from 10cm (for a pre-mature baby) to
50cm so we establish the following range buckets:

Note:

1. -infinity and +infinity will capture any values outside the specified ranges.

When a range search is performed these buckets are used to determine possible matches.
Consider the following searches for babies with a length of between:

1. 15cm to 35cm

In this case:
1. Three buckets can be safely ignored.
2. One bucket does not need to be checked and is definitely included in the

search.
3. Two buckets need to be checked for a match.

2. 15cm to 30cm

In this case:
1. Four buckets can be safely ignored.
2. One bucket does not need to be checked and is definitely included in the

search.
3. One bucket needs to be checked.

3. 10cm to 35cm

-inf 10 10 20 20 30 30 40 40 50 50 +inf

?

-inf 10 10 20 20 30 30 40 40 50 50 +inf

-inf 10 10 20 20 30 30 40 40 50 50 +inf

?

?

-inf 10 10 20 20 30 30 40 40 50 50 +inf

?

In this case:
1. Three buckets can be safely ignored.
2. Two buckets do not need to be checked and are definitely included in the

search.
3. One bucket needs to be checked.

 6

4. 10cm to 30cm

-inf 10 10 20 20 30 30 40 40 50 50 +inf

In this case:
1. Four buckets can be safely ignored.
2. Two bucket do not need to be checked and are included in the search.
3. No buckets need to be checked.

It should be clear from the last example that determining range buckets that match likely user
searches has a direct influence on the speed of range based queries.

The problem with setting the range bucket values is that the bucket values depend on two
variables. The first is the range of values entered into a field, in other words the data
distribution. If the Width field contains a wide range of values, it makes sense to have a wide
range of range buckets. If, however, the data is centred around one point, it may make sense
to have a series of range buckets cover this period.

The second variable is the query ranges used to retrieve data. The problem with this variable
is that for a given field it may be very hard to determine what sort of query ranges will be
used without performing extensive analysis.

As these two variables cannot be known before data has been loaded Vitalware provides a
default set of range buckets for each range searchable field. In general these buckets are
satisfactory for a small numbers of records, however significant reductions in search times
may be achieved by "tuning" the range buckets for large numbers of records.

Tuning the range indexes involves considering the two variables, data distribution and query
ranges, and for each variable determining the set of range buckets that provides optimal
performance. The objective in fine-tuning range indexing is to:

1. Minimise the number of buckets that need to be searched.
2. Minimise the number of records in buckets that need to be searched. Note that this

objective will take precedence over the default distribution of records evenly between
buckets.

Vitalware 2.1.01 provides a mechanism that allows System Administrators to have the range
buckets tuned automatically based on the data distribution within a field. The facility does not
take query ranges into account as this information requires subjective interpretation to
determine which queries are important to have optimised and which queries can run a little
slower.

The new facility does however provide data distribution information that may be used by a
System Administrator to set the range buckets manually to achieve optimal performance
where query ranges are known and can be weighted.

Hence the new facility provides automated range buckets, but allows System Administrators
to override these settings and configure their own buckets manually.

 7

Manual range bucket configuration
The setting of range bucket values is performed on a field basis. Each range indexed field
may have a Registry entry that defines the range buckets for that field. If a Registry entry
does not exist, the built-in values defined when the table was designed are used.

You can determine which fields have range indexing enabled by using the vwindexing
command. For example, running vwindexing eparties will show all indexes available
for the Parties module on a field by field basis:

Table "eparties"
 irn
 Type: Integer
 Indexing: Key
 SummaryData
 Type: Text
 Indexing: Word, Phonetic
 BioBirthEarliestDate
 Type: Date
 Indexing: Word, Range
 BioBirthLatestDate
 Type: Date
 Indexing: Word, Range
 ...

The word Range indicates fields that have range indexing enabled. Range indexing is
available on fields of type:

• Integer
• Float
• Date
• Time
• Latitude
• Longitude

In general, all fields of the above types will have ranging already enabled. It is possible to
enable and disable range indexing on fields of the above types via Vitalware Registry entries.
The same Registry entry used to set range buckets can also "disable" ranging by setting the
number of buckets to zero. Ranging is enabled by specifying one or more range bucket values
on a field, provided the field is one of the above types. Range searching is not supported on
Text or String based fields.

The Registry entry used to configure range buckets for a field is of the form:

System|Setting|Table|table|Range Buckets|colname|bucket;...

where table is the name of the Vitalware module that contains the field to be configured and
colname is the name of the field (this can be determined by using the What's this help?
facility in the Vitalware client, or via the vwindexing command). The bucket setting is a
semi-colon separated list of values to be used for range buckets. The format of the value
depends on the field type.

 8

When using the Range Buckets Registry entry it is important to make sure that the values
specified are all fully qualified. In particular, full date values are required. The table below
shows what constitutes a fully qualified value for each field type:

Field Type Format Examples
Integer n -10, 12, 25
Float n.nnnn -23.0, -5, 2.125, 10
Date yyyy-mm-dd 2003-10-23, 2008-03-17
Time hh:mm:ss.sss 10:30:00, 18:00:00.000
Latitude dd:mm:ss.sss:D 9:12:15.1:N,35:06:01:S
Longitude ddd:mm:ss.sss:D 123:34:06.34:W

As an example, the Registry entry below could be used to set the range buckets on the
CelRegistrationDate field in the Parties module:

System|Setting|Table|eparties|Range
Buckets|CelRegistrationDate|2000-01-01;2003-01-02;2006-01-
01;2009-01-01

Using the Range Buckets Registry entry System Administrators can set the range buckets
on any range based field manually. In order to help with this configuration a tool is provided
that can analyse the values in a field and provide a data distribution table, as well as
suggesting suitable bucket values.

 9

vwrangeupdate

The tool used to list, and optionally to set, suitable range buckets is called vwrangeupdate.
It is found on the Vitalware server. To use this facility it is necessary to log in to the
Vitalware server as user vw. The tool is used to perform a number of activities:

• print out suitable range buckets for examination
• install Vitalware Registry entries to be used when updating the indexes
• print a table of data distribution allowing manual configuration

The vwrangeupdate usage message is:

Usage: vwrangeupdate [-dip] [-qrv] [-mmin:max] [-nrecords] [[dbname][:column] ...]
where:
 -d use distribution based ranges [default]
 -i use interval based ranges
 -mmin:max minimum and maximum number of buckets to use [6:39]
 -nrecords records per bucket for distribution ranges [5000]
 -p use partition based ranges
 -q quiet mode, do not output progress
 -r update range Registry entries
 -v output data distribution table

It is possible to analyse anything from:

• a single column in one table
• to all columns in a table
• to a single column in all tables
• to all columns in all tables

The format used to specify a column for analysis is dbname:column, where dbname is the
name of the table to be analysed and column is the name of the column. The following
combinations are allowed:

• dbname - all columns in the table dbname will be analysed
• :column - column column in all tables will be analysed
• dbname:column - column column in table dbname will be analysed

Any number of the above entries may be supplied to vwrangeupdate. If an entry is not
given, all columns in all tables are examined.

The default action is for vwrangeupdate to print out suitable range buckets after
examining the data. The following is typical output after analysing the Date Modified field in
the Parties table:

 10

vwrangeupdate eparties:AdmDateModified
Processing eparties...
 Determining range columns...
 Checking registry entries...
 Exporting range data...
 Processing AdmDateModified...
 Range Buckets (distribution)
 =============
 2000-11-22
 2001-5-10
 2003-7-22
 2003-8-6
 2005-10-3
 2006-2-21

As you can see the output contains recommended range bucket values. These values could be
used with the Range Buckets Registry entry to set the range buckets for the Date
Modified field. The required Registry entry would be:

System|Setting|Table|eparties|Range
Buckets|AdmDateModified|2000-11-22;2001-05-10;2003-07-22;200
3-08-06;2005-10-03;2006-02-21

In fact it is possible to have vwrangeupdate add the Registry entry for you by specifying
the -r option on the command line:

vwrangeupdate -r eparties:AdmDateModified
Processing eparties...
 Determining range columns...
 Checking registry entries...
 Exporting range data...
 Processing AdmDateModified...
 Range Buckets (distribution)
 =============
 2000-11-22
 2001-5-10
 2003-7-22
 2003-8-6
 2005-10-3
 2006-2-21
 Registry entry updated...

If you want to perform some analysis of the data, you can use the -v option to have a data
distribution table printed:

 11

vwrangeupdate -v eparties:AdmDateModified
Processing eparties...
 Determining range columns...
 Checking registry entries...
 Exporting range data...
 Processing AdmDateModified...
 Value Count
 ===== =====
 2000:11:22 1507
 2001:5:10 1
 2003:7:22 2
 2003:8:6 1
 2003:8:26 1
 2003:9:4 2
 ...
 2007:12:27 1
 2008:1:3 1
 Distinct 74
 Total 2328
 Range Buckets (distribution)
 =============
 2000-11-22
 2001-5-10
 2003-7-22
 2003-8-6
 2005-10-3
 2006-2-21

The Value column contains a sorted list of all values from the Date Modified field. The
Count column indicates the number of occurrences of the value. At the end of the table the
Distinct value provides the number of unique values and Total is the total number of
values (including repeated values). With this information it is possible to perform some
analysis (MS Excel may come in handy here!) and determine suitable range buckets.

Number of range buckets

When calculating the range bucket values another variable is the number of range buckets to
use. The maximum number of buckets allowed is 39. When determining the optimal number
of buckets vwrangeupdate uses two pieces of information. The first is the minimum
number of buckets that may be used. The default value is 6. You can use the -mmin:max
option to alter the minimum and maximum number of buckets allocated. For example:

vwrangeupdate -m2:15

will allocate a minimum of two and a maximum of fifteen buckets. To determine the number
of buckets to use within this range vwrangeupdate computes the number of values in the
column (the Total value from the data distribution table). It then divides this number by the
number of records per bucket value (default value of 5,000) to give the number of buckets
to allocate. For example, if a column has 40,000 values, 8 range buckets will be allocated.
You can alter the number of records per bucket by specifying the -nrecords option. For
example, if we use the following command:

vwrangeupdate -m2:15 -n2000

 12

and the column contains 40,000 values, fifteen buckets are allocated (40,000 / 2,000 = 20;
however the maximum number of buckets allowed is fifteen via the -m2:15 option).

There are two special cases concerning the allocation of buckets. The first is for columns that
do not contain any values. In this case only one bucket is allocated. The bucket is used to
provide fast searching since any range search specified will not match the indexes; however
the indexes can be used as part of the search.

The second case is where a column is part of the server table but is not used in the Vitalware
client. This can occur when clients decide to sub-class standard modules and remove columns
they do not require. In this case zero range buckets are allocated.

The following output shows range buckets for an existing column without data and for a
column not used by the client:

vwrangeupdate eparties:AssStartDate0 eparties:InfoDate0
Processing eparties...
 Determining range columns...
 Checking registry entries...
 Exporting range data...
 Processing AssStartDate0...
 Range Buckets (distribution)
 =============
 1970-1-1
 Processing InfoDate0...
 Range Buckets (distribution)
 =============

Bucket selection methods

When determining what range buckets to use vwrangeupdate provides three algorithms
that offer different focuses on bucket allocation. These algorithms are known as the
distribution, interval and partition methods.

Distribution method

The distribution method tries to allocate the same number of values to each range bucket. The
result is an even distribution of the values over the entire set of range bucket values. For
example, if we have the following data distribution:

 13

 Value Count
 ===== =====
 1959:1:20 1
 1973:3:8 1
 1974:3:8 1
 1975:2:11 3
 1977:: 3
 1977:2:8 1
 1981:: 1
 1982:11:8 1
 1983:4:12 3
 1983:5:9 1
 1984:9:11 1
 1985:: 1
 1985:6:12 1
 1986:2:11 1
 1986:6:17 1
 1986:9: 1
 1988:6:28 2
 1989:1: 2
 1995:6:6 1
 1995:9: 1
 1996:2: 1
 1996:2:28 4
 1996:4:3 1
 1996:9:17 1
 1997:8:20 1
 2003:10:17 1
 Distinct 26
 Total 37

we get the following range buckets calculated:

 Range Buckets (distribution)
 =============
 1977-2-8
 1986-2-11
 1996-2-1

The graphic below shows the values per bucket:

-inf 8/2/1977 8/2/1977 11/2/1986 11/2/1086 1/2/1996 1/2/1996 +inf

10
records

11

records
 10

records
 9

records

The distribution method provides optimal searching where the query ranges are not known in
advance and where a reasonable spread of query ranges is expected. As equal numbers of
records are placed in each range bucket the index will generally provide reasonable
performance for any given query. The distribution method is the default method used by
emurangeupdate. The -d option may be used to select this ranging method.

Interval method

The interval method takes a different approach to the distribution method. Rather than
ensuring that an equal number of records is allocated to each range bucket, the interval
method generates equal intervals between each bucket value. It does this by taking the
difference between the minimum value and the maximum value and apportioning it between

 14

the specified number of bucket intervals. So for the data distribution provided for the
distribution method the generated intervals are:

 Range Buckets (interval)
 =============
 1970-3-27
 1981-6-3
 1992-8-10

The graphic below gives the intervals:

-inf 27/3/1970 27/3/1970 3/6/1981 3/6/1981 10/8/1992 10/8/1992 +inf

4085
days

4086
days

4086
days

4085
days

The advantage of the interval method is that it gives a decent set of range buckets when data
is not available for a given field (generally because it has not been entered or imported). It
also provides buckets that may be more in line with query ranges that correspond to fixed
intervals (e.g. year ranges for date searches, hour intervals for time searches, etc.) and so
gives better performance where query range intervals are commonly used. Interval ranges can
be generated by specifying the -i option to vwrangeupdate.

Partition method

The partition method is similar to the distribution method, however rather than ensuring that
equal numbers of records are in each range bucket it ensures that equal numbers of unique
values are in each range bucket (if ten values are the same, they are distributed as a single
value). For the data distribution provided for the distribution method the generated partitions
are:

 Range Buckets (partition)
 =============
 1981-1-1
 1986-2-11
 1996-2-1

The graphic below shows the number of distinct values for each range bucket:

-inf 1/1/1981 1/1/1981 11/2/1986 11/2/1986 1/2/1996 1/2/1996 +inf

7
values

7

values

7

values

5

values

The partition method is useful when a good distribution of buckets is required that takes into
account the values that have already been entered without giving undue influence to the
weighting of each value (as is the case with the distribution method). In general this method
will provide good "all-round" performance as it gives sensible range intervals based on the
data already entered. Partition ranges can be generated by specifying the -p option to
vwrangeupdate.

 15

Configuring vwrangeupdate

When vwrangeupdate is invoked it uses the Vitalware Registry to look for hints as to how
many range buckets should be allocated and what type of distribution method should be used
for any given column. Administrators may set Registry entries that can enable range
searching on columns that do not have range support currently. It is also possible to disable
range searching if a column does not require this type of indexing.

The format of the Registry entry is:

System|Setting|Table|table|Range Index|colname;...

where table is the name of the module containing the columns to be set. The colname
setting is a list of semi-colon separated column names, listing the columns for which range
searching is to be enabled (cf. Null Index and Partial Index Registry entries). It is
possible to provide hints about the range index for the column by appending to the column
name the number of range buckets required and the distribution method to be used. The
format of the entry is:

colname=number:method

where number is the number of range buckets to allocate for the given colname and
method is the distribution method to use. Allowable method values are:

• distribution
• interval
• partition

corresponding to the methods described above. A number setting of zero (0) will disable
range indexing for the given field.

For example, if the Date Modified field is searched regularly using fairly small query ranges
(e.g. monthly), you may want to increase the number of range buckets allocated and use the
partition distribution method. You may also want to disable range indexing for the Time
Modified field as users do not use it for range based searches (note that disabling range
indexing does not mean you cannot perform range searches on a column, it just means that
the search cannot use any indexing information to provide faster searching). The following
Registry entry can be used to reflect these changes:

System|Setting|Table|eparties|Range
Index|AdmDateModified=15:partition;AdmTimeModified=0

Notice how all range column settings are specified in the one Registry entry. While this may
seem confusing it is consistent with the Null Index, Partial Index, Stem Index
and Phonetic Index Registry entries.

If you only want to change the distribution method for a column, you need not specify the
number of buckets. For example, the entry:

System|Setting|Table|eparties|Range
Index|AdmDateModified=:partition

will ensure the partition method is used for the Date Modified field.

 16

 17

System Maintenance

The vwrangeupdate utility has been designed not only to suggest suitable range buckets
for range indexing, but also to update/create Registry entries that will result in the new range
buckets being implemented the next time the database indexes are rebuilt (generally on the
weekend).

Using the -r option with vwrangeupdate will result in the creation of Range Buckets
Registry entries reflecting the suggestions made by the utility. The Registry entries created
differ slightly from the standard Registry entry in that the list of bucket values is prefixed
with the string auto:. The string is used to indicate that the entry was made by
vwrangeupdate rather than by a System Administrator. Only Registry entries with the
auto: prefix are updated by vwrangeupdate; all other entries (that is, those created by
other means) are not changed. This means that System Administrators may add their own
entries manually and they will be preserved by vwrangeupdate.

It is recommended that vwrangeupdate is run on a regular basis to ensure that optimal
range searching is available. The easiest way to provide automated configurations is to add an
entry to user vw's crontab (via vwcron), similar to:

Calculate range buckets (first day of each month)

0 0 1 * * ${VWPATH}/bin/vwrun vwrangeupdate -r 2>&1 | ${VWPATH}/bin/vw
run vwlogger -t "KE Vitalware Range Update Report" reindex

You may consider adding other options (e.g. -m3:39 or -p) as required.

	1. Release Notes
	Release Notes: Vitalware 2.1.01 Release Date: 24 July 2009
	Requirements
	Updates / New Features
	Issues Resolved

	2. Statistics
	Overview
	Statistics Module
	Reporting

	Periodic Tasks
	vwperiodic
	Tasks
	Creating a new period
	Regenerate missing data

	Name
	Synopsis
	Description
	KE::Statistics::Session
	Methods

	KE::Statistics::ResultSet
	Methods

	KE::Statistics::Date
	Methods

	KE::Statistics::Statistics
	Methods

	Bugs
	See Also

	3. Record Recall
	Record Recall
	Overview
	Recall Single Record
	Recall batch mode
	Registry Entry

	4. Record Templates
	How to create records using Record Templates
	How to create a Record Template
	How to define a Record Template
	Atomic Fields
	Nested Table Fields
	Double Nested Table
	An example record
	template tag
	Attributes
	Contains
	Contained within

	source tag
	Attributes
	Contains
	Contained within

	input tag
	Attributes
	Contains
	Contained within

	prompt tag
	Attributes
	Contains
	Contained within

	help tag
	Attributes
	Contains
	Contained within

	value tag
	Attributes
	Contains
	Contained within

	records tag
	Attributes
	Contains
	Contained within

	number tag
	Attributes
	Contains
	Contained within

	report tag
	Attributes
	Contains
	Contained within

	column tag
	Attributes
	Contains
	Contained within

	Some example Record Templates
	Example 1
	Example 2

	5. XSLT processing
	6. FIFO
	Overview
	Scripts and command line
	KE Texpress Validation
	C++ Client Code
	Work Hours
	System Lookup

	Index

	7. Configuration
	KE Vitalware Configuration
	Overview
	The Basic Theory
	Coding Scheme
	Superimposed Scheme
	False Matches
	Calculating k and b

	Record and Segment Descriptors
	Calculating a value for Nr
	Bit Slicing
	False match probability

	What is an atom?
	Atoms per record
	Summary of variables
	Configuration tools
	texanalyse
	texdensity
	texconf

	Setting configuration parameters

	8. Range Indexing
	Range Indexing
	Overview
	How range indexing works
	Manual range bucket configuration
	vwrangeupdate
	System Maintenance

