

www.kesoftware.com
© 2011 KE Software. All rights reserved.

Vitalware Training

The After Export facility
Document Version 1.1

Vitalware Version 2.0

Contents

S E C T I O N 1 Overview 1

S E C T I O N 2 Setting an After Export Command 3

S E C T I O N 3 Developing an After Export script 7
The After Export script 7
Creating an After Export script 13
KE::Export usage 19

Index 31

Overview

The After Export facility

S E C T I O N 1

Overview

The Scheduled Exports facility introduced with Vitalware 2.1.02 provides a mechanism for
exporting data out of Vitalware on a regular or adhoc basis. Exports scheduled on a regular
basis are executed by the server without any user intervention. When an export is
complete, a record is added to the Exports module with:

• The results of the export
• A list of the files generated
• Any associated errors

The user must then retrieve the record from the Exports module to access the results and
the exported data.

Introduced with Vitalware 2.2.02, the After Export facility allows a command to be executed
once an export has completed. Amongst other things, the command can:

• Email the export files to a list of users.
• Email the results of the export to a list of users.
• Copy the export files to another machine behind a secure firewall.
• Copy the export files over the internet via a secure transfer mechanism.
• Send an SMS to a list of telephone numbers.

In fact, an After Export command may perform any number of tasks as it has full access to
the Exports record generated. The command runs on the Vitalware server allowing access
to the full facilities offered by the server. The After Export facility is designed to allow new
commands to be added within the existing framework. In order to simplify the creation of
new commands, the KE::Export perl module is provided; this incorporates much of the
functionality required by an After Export command.

1

Setting an After Export Command

The After Export facility

S E C T I O N 2

Setting an After Export Command

A scheduled export is configured using the Export Properties dialog in a module (by
selecting Tools>Export from the module Menu bar). An After Export command is added to
a scheduled export using the After Export tab of the Export Properties dialog:

• If an After Export command has been defined, it can be selected from the Command
drop list on the After Export tab.

• A command may require values to be provided by a user in order to run; if so, input
boxes for the required values will display on the After Export tab when the command
is selected from the Command drop list.

In Vitalware:

1. Open any module.
2. Search for or otherwise list a group of records.
3. Select Tools>Export in the Menu bar

-OR-
Use the keyboard shortcut, ALT+T+X.
The Exports dialog displays with a list of scheduled exports for the current module:

4. Select a scheduled export and click .

3

Setting an After Export Command

4

The Export Properties dialog displays:

The After Export facility

Setting an After Export Command

The After Export facility

5. Select the After Export tab:

6. From the Command drop list, select the command to be executed.

5

Setting an After Export Command

6

If the command requires values to be provided in order to run, input boxes for the
parameters will display on the After Export tab:

7. Enter values for each of the fields and when you're done, click .
If a parameter was not provided, an error will display:

If all parameters have a value, the After Export command is saved and will be
executed next time the scheduled export is run.

The After Export facility

Developing an After Export script

The After Export facility

S E C T I O N 3

Developing an After Export script

The After Export script

The Schedules module holds a record for each scheduled export defined in any module.

When an After Export command is added to a scheduled export, a script located on the
Vitalware server is executed after the scheduled export is run. In the Schedules record for
the scheduled export:

• Command: (After Export Details) holds the name of the script to be executed.
• Parameters: (After Export Details) lists the parameters required by the script.

In the Schedules record below, the script executed when the scheduled export is complete
is called ftp. It has four parameters:

• reports.server.com (host name)
• reports (user name)
• rep.passwd (password)
• /reports/nightly (location)

7

Developing an After Export script

8

The script file is located in one of the following directories on the Vitalware server:

• local/etc/exports/after/table
• local/etc/exports/after
• etc/exports/after/table
• etc/exports/after

where table is the name of the table (module) on which the export is performed. The table
name is indicated in the Module: (Schedule Details) field (as shown above). To locate the
script, the system looks for a file called ftp (in this case) in each of the directories listed,
from first to last. When the file is found, the script stored in it is executed.

The hierarchy of directories listed above allows customized versions of existing scripts to
be added by simply placing a file with the same name as the existing script into one of the
local directories.

An After Export script is called by one of two methods:

1. In the first method, a script is called when a user selects a command from the
Command drop list on the After Export tab of the Export Properties dialog.
In this case, the Vitalware client calls the script to get the title and list of parameters
required by the command: the title displays in the Command drop list and the
parameters are displayed below it. The Vitalware client calls the script with one
argument, an option indicating which language to use to display the script's title and
parameters. The usage is:
script -lnum

The After Export facility

Developing an After Export script

The After Export facility

where num is a number corresponding to the language to use:

Number Language

0 English

1 French

2 English (American)

3 Spanish

4 German

5 Italian

6 Dutch

7 Danish

8 Polish

9 Norwegian

10 Swedish

11 Greek

12 Arabic

13 Hebrew

14 French (Canadian)

15 Finish

 The l in script -lnum is a lowercase L.

For example, running ftp - l0 produces:
Transfer to another host (FTP)
Host:
User:
Password:
Folder:
The first line is displayed in the Command drop list and the remaining lines are
displayed as prompts for input boxes:

9

Developing an After Export script

10

If the command is not supported by the local machine, then no output should be
generated (the command should be hidden in the Command drop list) and a non-
zero exit status returned.

2. In the second method, the back end vwexport command calls the After Export script
after a scheduled export has run and a record with the results of the export has been
created in the Exports module. In this instance the script is called with the IRN
(Internal Record Number) of the record created in the Exports (eexports) module.
The usage is:
script exportirn
The script should use exportirn to access the Exports (eexports) record and perform
whatever activities the script was designed to do (e.g. send an email, copy files, etc.).
If an error occurs while processing the export, an error message should be printed
and a non-zero exit status returned. If the script completes successfully, a zero exit
status should be returned.

These two methods are explained in detail in Creating an After Export script (page 13).

The perl code below is a sample ftp script:

The After Export facility

Developing an After Export script

The After Export facility

11

#!/usr/bin/perl

Copyright (c) 1998-2011 KE Software Pty Ltd

use strict;
use KE::Export;

Parameters for ftp.

my $prompts =
{
 0 => [
 "Transfer to another host (FTP)",
 "Host:",
 "User:",
 "Password:",
 "Folder:"
]
};

Check whether ftp is supported on this machine.

my $ftp = KE::Export::Ftp->new();
if (! $ftp->IsSupported())
{
 exit 1;
}

Parse the arguments.

my $export = KE::Export->new();
if (! $export->ParseArgs(\@ARGV))
{
 exit 1;
}

List parameters if required.

if ($export->ListParameters($prompts))
{
 exit 0;
}

Do the transfer with the required arguments.

my $status = $ftp->Execute
(

Developing an After Export script

12

The After Export facility

 host => $export->GetData('Parameters_tab')->[0],
 user => $export->GetData('Parameters_tab')->[1],
 password => $export->GetData('Parameters_tab')->[2],
 destination => $export->GetData('Parameters_tab')->[3],
 filelist => $export->GetData('FileName_tab')
);

Send back the error status.

exit $status;

This script uses the perl KE::Export module which provides most of the required
functionality.

In essence the script:

1. Checks whether the server provides FTP support. If not, it returns a non-zero exit
status (i.e. 1).

2. Parses the arguments to determine which version of the script has been called.
If the arguments are invalid, a non-zero exit status is returned once again.
-OR-
If a valid -lnum argument was given and the script was called using the first method
described above, the script prints out the title and parameters for language num.
Then exits with a zero exit status (indicating success).
-OR-
If the script was called using the second method described above, the file transfer is
performed using ftp. An ftp object, passed the required parameters, transfers the
files. The status of the ftp object is used for the exit status, where a non-zero value
indicates the transfer failed, and a zero indicates success.

For a complete description of the functionality provided by the KE::Export module see
KE::Export usage.

Developing an After Export script

The After Export facility

13

Creating an After Export script

The script for an After Export command must handle the two usage cases where the script
is either called with:

• -lnum to provide the command title and list of parameters
-OR-

• with the IRN of an eexports record to perform what the script is required to do

In order to make script writing easier, a perl module KE::Export is provided that
encompasses most of the functionality needed by an After Export script. It is recommended
that you use the module to cut down development time. For a complete description of the
functionality provided by the KE::Export module see KE::Export usage.

To demonstrate how a new command could be put together we'll write a script that copies
the output files from an export into a location on a SAN drive (mounted as /exports)
based on the date of the export and a user specified department and then send an email to
a user supplied address.

The first part of the script involves setting up the title and parameters. Two parameters are
required, the first is the department under which to file the export files and the second is
the email addresses to notify once the files have been copied:

Parameters for copy and email notification

my $prompts =
{
 0 => [
 "Copy files to SAN and email results",
 "Department:",
 "Recipient(s):"
]
};

The first string is the title to show in the Command drop list, and the following two
parameters allow the department and email addresses to be entered. The resulting
After Export tab is:

Developing an After Export script

14

Next check to make sure the server supports both the copying of files and emailing of
messages. If support for either is not provided, the command should be hidden in the
Command drop list. An exit status of 1 indicates the command is not supported:

Check whether email and copy are supported on this machine.

my $copy = KE::Export::Copy->new();
my $email = KE::Export::Email->new();
if (! $email->IsSupported() || ! $copy->IsSupported())
{
 exit 1;
}

Once we have confirmed the required functionality is supported, we check that the supplied
arguments are valid. If they are not, exit with an error status of 1:

The After Export facility

Developing an After Export script

The After Export facility

15

Parse the arguments.

my $export = KE::Export->new();
if (! $export->ParseArgs(\@ARGV))
{
 exit 1;
}

Since the supplied arguments are acceptable, look for the -lnum case. If the arguments
match, the prompts defined above are printed out and we exit with a successful status of 0:

List parameters if required.

if ($export->ListParameters($prompts))
{
 exit 0;
}

If we get to here, we must process the eexports record whose IRN was supplied as the
argument. First build up the full path to the folder in which we want to store the export files.
We use the FileRunDate column on the eexports record to get the date on which the export
was run, and the first entry in the Parameters_tab column list to get the department
entered by the user. Once we have the destination path, make sure the folder exists (using
mkdir). If the folder cannot be created, exit with an error status of 1:

Build up the destination directory and make sure it exists.

my $date = $export->GetData('FileRunDate');
my $department = $export->GetData('Parameters_tab')->[0];
my $destination = "/tmp/$department/$date";
if (system("mkdir -p '$destination'") != 0)
{
 exit 1;
}

It is now time to copy the export files to the destination folder. We use a
KE::Export::Copy object to perform the transfer. The FileName_tab column contains a
list of all the files created by the export:

Do the copy with the required arguments.

my $status = $copy->Execute
(
 destination => $destination,
 filelist => $export->GetData('FileName_tab')
);

Now build up the body of the email message to send to the recipients. Include the name of
the export, the date on which it ran, the folder into which the export files were copied and
indicate whether the transfer was successful:

Developing an After Export script

16

The After Export facility

Build up the email message to send

my $body = "The files from export \"" .
 $export->GetData('ScheduleRef:eschedule:Name') .
 "\", run on $date have been copied to $destination.\n" .
 "The copy " . $status ? "failed" : "succeeded.\n";

Finally, send the email message to all the recipients. Use the second parameter to extract
the email addresses of the recipients. The email's subject is the name of the scheduled
export:

Do the email with the required arguments.

my $status = $email->Execute
(
 recipients => $export->GetData('Parameters_tab')->[1],
 subject => $export->GetData('ScheduleRef:eschedule:Name'),
 body => $body
);

Return the status of the email object, indicating whether the emails were sent correctly or
not:

Send back the error status.

exit $status;

The complete script is:

Developing an After Export script

The After Export facility

17

#!/usr/bin/perl

Copyright (c) 1998-2011 KE Software Pty Ltd

use strict;
use KE::Export;

Parameters for copy and email notification

my $prompts =
{
 0 => [
 "Copy files to SAN and email results",
 "Department:",
 "Recipient(s):"
]
};

Check whether email and copy are supported on this machine.

my $copy = KE::Export::Copy->new();
my $email = KE::Export::Email->new();
if (! $email->IsSupported() || ! $copy->IsSupported())
{
 exit 1;
}

Parse the arguments.

my $export = KE::Export->new();
if (! $export->ParseArgs(\@ARGV))
{
 exit 1;
}

List parameters if required.

if ($export->ListParameters($prompts))
{
 exit 0;
}

Build up the destination directory and make sure it exists.

my $date = $export->GetData('FileRunDate');
my $department = $export->GetData('Parameters_tab')->[0];
my $destination = "/tmp/$department/$date";

Developing an After Export script

18

The After Export facility

if (system("mkdir -p '$destination'") != 0)
{
 exit 1;
}

Do the copy with the required arguments.

my $status = $copy->Execute
(
 destination => $destination,
 filelist => $export->GetData('FileName_tab')
);

Build up the email message to send.

my $body = "The files from export \"" .
 $export->GetData('ScheduleRef:eschedule:Name') .
 "\", run on $date have been copied to $destination.\n" .
 "The copy " . ($status ? "failed" : "succeeded") . ".\n";

Do the email with the required arguments.

my $status = $email->Execute
(
 recipients => $export->GetData('Parameters_tab')->[1],
 subject => $export->GetData('ScheduleRef:eschedule:Name'),
 body => $body
);

Send back the error status.

exit $status;

The script should be placed in the directory local/etc/exports/after as it is a
customized script. The file name of the script is not important, but something like
copyemail would be appropriate. Remember to change the file permissions so it can be
executed (i.e. chmod 755 copyemail). Your script is now ready for use.

Developing an After Export script

The After Export facility

19

KE::Export usage

The KE::Export perl package provides a number of very useful objects that simplify the
process of creating an After Export script. The package file is located in
utils/KE/Export.pm and is documented fully. To view the documentation use pod2text
Export.pm (assuming you are in the utils/KE directory). For your convenience the
documentation is reproduced here:

NAME

 KE::Export - A set of objects usable by After Export scripts

SYNOPSIS
use KE::Export;
my $prompts =
 {
 0 => [
 'Copy to another folder (CP)',
 'Folder:'
]
 };

 my $copy = KE::Export::Copy->new();
 if (! $copy->IsSupported())
 {
 exit 1;
 }

 my $export = KE::Export->new();
 if (! $export->ParseArgs(\@ARGV))
 {
 exit 1;
 }
 if ($export->ListParameters($prompts))
 {
 exit 0;
 }

 my $status = $copy->Execute
 (
 destination => $export->GetData('Parameters_tab')->[0],
 filelist => $export->GetData('FileName_tab')
);

 exit $status;

DESCRIPTION

 The "KE::Export" module provides a set of objects to make the
implementation of After Export commands easier. An After Export
command may be registered with a scheduled export through the "After

Developing an After Export script

20

The After Export facility

Export" tab in the Export Properties dialogue box. If an After Export
command is registered with a scheduled export, the command is executed
once the export phase is complete.

 The After Export command provides a mechanism for dealing with the
exported data after it is generated. In particular the command may:

 * Email the results of the export to a list of users.
* Email the export files to a list of users.
* Copy the export files onto another machine.
* Send an SMS to a list of telephone numbers.

 An After Export command corresponds to a script located in one of the
following directories on the server machine:

 local/etc/exports/I<table>/after
local/etc/exports/after
etc/exports/I<table>/after
etc/exports/after

 The directories are examined in the order specified above to locate
the required script. Using this mechanism it is possible to override a
script provided with the system with a custom built one. To do so just
add your custom script, with the same name as the script you are
overriding, to a directory listed above the directory in which the
system script is located. For example, if you want to override the
system "ftp" script stored in etc/export/after/ftp, you would place
your script in the file local/etc/export/after/ftp.

 Each After Export script may be invoked in two ways. These are:

 "script -l*num*"

 where *num* is the language number to use when outputting the
parameters. This form of the script is expected to print out the
title of the script to use in the drop list on the "After
Export" tab in the client and a list of required parameter
prompts, one per line. For example, the "ftp" script invoked by
"ftp -l0" (to print out the title and parameters in English)
produces:

 Transfer to another host (FTP)
Host:
User:
Password:

 where the first line is displayed in the "Command:" drop list on
the "After Export" properties tab and the remaining lines are
shown as input boxes below the "Command:" drop list with the text
used as the prompt. The user must specify each of the parameters
before a valid After Export command may be saved.

 The language number supplied via the "-l" option determines the
language in which the output should appear. The registered
language numbers are:

Developing an After Export script

The After Export facility

21

 0 - English
1 - French
2 - English (American)
3 - Spanish
4 - German
5 - Italian
6 - Dutch
7 - Danish
8 - Polish
9 - Norwegian
10 - Swedish
11 - Greek
12 - Arabic
13 - Hebrew
14 - French (Canadian)
15 - Finnish

 "script *exportirn*"

 The second way of invoking a script is to supply the irn (Internal
Record Number) of the record in the "eexports" table on which the
script is to operate. In this case the script needs to perform
what is deemed its duty. For example, in the case of the "ftp"
script, the export files produced will be FTPed to another host,
The username, password and destination on the remote host are used
to make the transfer.

 The normal life cycle of a "KE::Export" object is:

 1 Create the object (via "new()").

 2 Parse any script parameters to determine which of the two uses
of the script is appropriate (via "ParseArgs()").

 3 Output the title and parameters if the script was invoked with
the first usage (via "ListParameters()").

 4 Extract the parameters and execute the required functionality if
the script was invoked with the second usage (via "GetData()").

 For examples of how to use the "KE::Export" module please review the
After Export scripts installed on the server machine with the default
installation.

KE::Export

 A "KE::Export" object provides a wrapper around a set of utility
functions. These functions are designed to simplify the process of
writing After Export scripts by encapsulating standard functionality.
In particular, the following facilities are offered:

Developing an After Export script

22

The After Export facility

 * A standard way of parsing the script's arguments to determine
which type of invocation was used. See ParseArgs().

 * A standard mechanism for outputting the script parameters when
invoked with the "-l" option. See ListParameters().

 * A mechanism for determining the languages supported by the server.
See Languages().

 * A means of extracting data from the underlying batch record and
its associated schedule record. In fact, any links from the batch
record may be followed to retrieve data from other modules. See
GetData().

 Each After Export script should use a "KE::Export" object to simplify
access to the underlying export record.

Methods

 new()

 $export = KE::Batch->new();

 Creates an object that provides access to the underlying export
record. The object also provides access to helper functions that
simplify After Export scripts. In order to release all resources
associated with a "KE::Export" object (for example, a connection
to a server) "undef" should be assigned to the object variable
once the object is no longer required.

 GetData($colname)

 $data = $export->GetData('StartDate');
$host = $export->GetData('Parameters_tab')->[0];
$filelist = $export->GetData('FileList_tab');
$name = $export->GetData('ScheduleRef:eschedule:Name');

 Retrieves the data for the given column. The $colname argument may
be the name of any column in the "eexports" table. The value
returned is consistent with the kind of data stored in the column.
An atomic column returns a string, a table returns a reference to
a list of strings and a nested table returns a reference to a list
where each element is itself a list of strings.

 It is also possible to access columns in other modules by
specifying the name of the link field in "eexports" followed by
the table name and column in the linked table. Each component is
separated by a colon. There is no limit to the number of
components in the column name for linked fields. For example, the
column name "ScheduleRef:eschedule:Name" uses the link from
"eexports" to "eschedule" (via column ScheduleRef) to access the
Name field in the "eschedule" table. In other words, the name of
the scheduled export is retrieved.

 The "Parameters_tab" column provides access to the command
parameters entered for the After Export command. The
"FileList_tab" column provides a list of all the files generated
by the export process.

Developing an After Export script

The After Export facility

23

Languages()

 $langlist = $export->Languages();

 Retrieves the list of languages supported by the server. The list
consists of a string of semi-colon separated language numbers. For
example, the string "0;1" indicates the server supports English
and French, where English is the primary language. The
"Languages()" call is used by After Export commands where text is
generated as part of the script. The text must be output in
languages supported by the server.

 The "Languages()" function returns the value of the
"System|Setting|Language|Supported" Registry entry.

 ListParameters($prompts)
my $prompts =
 {
 0 => [
 "Email export results (SMTP)",
 "Recipient(s):"
]
 };

 if ($export->ListParameters($prompts))
 {
 exit 0;
 }

 Prints out the title and parameters for the After Export command.
If the "ParseArgs()" call determined the list of parameters should
be printed (via the "-lnum" option), then the title and parameters
for the given language number are printed and the call returns 1.
If the "-lnum" option was not specified, the call returns 0.

 The $prompts argument is a reference to a hash, where the key is
the language number and the value is a reference to a list of
strings. The first string is the title and subsequent strings are
parameters. The title string is shown in the Command drop list,
and the parameters strings are shown below the Command drop list
with a corresponding data entry field where values may be
specified.

 ParseArgs(\@ARGV)
if (! ParseArgs(\@ARGV))
 {
 exit 1;
 }

 Parses the on-line arguments determining whether the parameters
are to be printed (as "-lnum" was supplied) or the command
executed (the eexports irn was supplied).

 If invalid options are found, a usage message is printed and 0 is
returned. If the arguments are correct, 1 is returned.

Developing an After Export script

24

The After Export facility

KE::Export::Command

 The "KE::Export::Command" class is the base class for all After Export
commands. It consists of two methods each After Export command must
implement. The first is "IsSupported()" which returns 1 if the After
Export command is supported by the server. Some commands may require
special software or certain perl modules to be installed before they
can be used. The second method is "Execute()", which performs the
command itself.

 This class should not be called directly from within After Export
scripts, rather a sub-class should be created and the IsSupported()
and Execute() methods overridden.

Methods

 new()

 $export = KE::Batch::Command->new();
$export = KE::Batch::Command->new(debug => 1);

 Creates an object used to execute an After Export command. The
"new()" method should not be called directly, rather sub-classed
versions should be used. Debugging may be enabled by setting the
named argument "debug" to a non-zero value.

 Execute()

 $status = $command->Execute()

 Executes the After Export command. The "Execute()" method
implements the functionality required by the After Export command.
For example, if the command is to email the resulting export files
to a user, the method must perform the actual emailing and
attaching of export files.

 The method should return 0 if the command was successful,
otherwise 1 should be returned.

 Each sub-class must override this method to implement the
functionality specific to the sub-class's command.

 IsSupported()

 $support = $command->IsSupported();

 Determines whether the After Export command is supported by the
server. An After Export command may have dependencies on a number
of programs or perl modules. The "IsSupported()" method checks
each dependency is available, and if so returns 1, otherwise 0. A
return value of 0, removes the After Export command from the
Command drop list in the client.

KE::Export::Sftp

 The "KE::Export::Sftp" class allows secure file transfer (SFTP) to be
used to copy the export files to another machine. The "sftp"
functionality provided by the "scp" command set is used for the file
transfers. The file is encrypted during the copy ensuring privacy of
data.

Developing an After Export script

The After Export facility

25

Methods

 Execute()
 $sftp = KE::Export::Sftp->new();
 $status = $sftp->Execute
 (
 host => 'other.machine',
 user => 'username',
 password => 'passwd',
 destination => '/exports/nightly/',
 filelist => $export->GetData('FileList_tab')
);

 Performs a secure copy of the export files generated to another
host. A number of named arguments are available, all are
mandatory:

 host

 The host name of the machine onto which the export files are
to be copied.

 user

 The user name to use to log in to the remote machine.

 password

 The password to use to log in to the remote machine.

 destination

 The directory in which the export files are to be placed. The
directory must exist.

 filelist

 A reference to a list containing the files to be transferred
to the remote machine.

 "Execute()" returns 0 if the transfers succeeded, otherwise 1 is
returned. If an error occurs, it is written to stdout.

 IsSupported()

 $sftp = KE::Export::Sftp->new();
$status = $sftp->IsSupported();

 Indicates whether the server has the necessary dependencies
installed to provide secure file transfer. A return value of 0
implies the server does not support secure file transfer, while a
value of 1 implies it does.

KE::Export::Ftp

 The "KE::Export::Ftp" class allows file transfer (FTP) to be used to
copy the export files to another machine. The data transferred is not
encrypted while in transit. As the password is sent to the server
without any encryption, that is as clear text, "KE::Export::Ftp"
should be used only within internal networks, behind a secure
firewall. FTP may offer superior throughput to SFTP.

Developing an After Export script

26

The After Export facility

Methods

 Execute()
 $ftp = KE::Export::Ftp->new();
 $status = $ftp->Execute
 (
 host => 'other.machine',
 user => 'username',
 password => 'passwd',
 destination => '/exports/nightly/',
 filelist => $export->GetData('FileList_tab')
);

 Performs a copy of the export files generated to another host. A
number of named arguments are available, all are mandatory:

 host

 The host name of the machine onto which the export files are
to be copied.

 user

 The user name to use to log in to the remote machine.

 password

 The password to use to log in to the remote machine.

 destination

 The directory in which the export files are to be placed. The
directory must exist.

 filelist

 A reference to a list containing the files to be transferred
to the remote machine.

 "Execute()" returns 0 if the transfers succeeded, otherwise 1 is
returned. If an error occurs, it is written to stdout.

 IsSupported()

 $ftp = KE::Export::Ftp->new();
$status = $ftp->IsSupported();

 Indicates whether the server has the necessary dependencies
installed to provide file transfer support. A return value of 0
implies the server does not support file transfer, while a value
of 1 implies it does.

KE::Export::Scp

 The "KE::Export::Scp" class allows secure copy (SCP) to be used to
transfer the export files to another machine. The data transferred is
encrypted while in transit. An SCP connection may be formed by either
supplying a password, or not. If a password is not supplied, X509
based certificates may be used removing the need for a password. In
general, X509 based connections are preferred as a password does not
need to be stored in the command script.

Developing an After Export script

The After Export facility

27

Methods

 Execute()
 $scp = KE::Export::Scp->new();
 $status = $scp->Execute
 (
 host => 'other.machine',
 user => 'username',
 password => 'passwd',
 destination => '/exports/nightly/',
 filelist => $export->GetData('FileList_tab')
);

 Performs a copy of the export files generated to another host. A
number of named arguments are available, most are mandatory:

 host

 The host name of the machine onto which the export files are
to be copied. A host name must be supplied.

 user

 The user name to use to log in to the remote machine. A user
name must be supplied.

 password

 The password to use to log in to the remote machine. If a
password is not supplied, an X509 certificate based connection
is attempted.

 destination

 The directory in which the export files are to be placed. The
directory must exist. A destination must be supplied.

 filelist

 A reference to a list containing the files to be transferred
to the remote machine. A list of files to transfer must be
supplied.

 "Execute()" returns 0 if the transfers succeeded, otherwise 1 is
returned. If an error occurs, it is written to stdout.

 IsSupported()

 $scp = KE::Export::Scp->new();
$status = $scp->IsSupported();

 Indicates whether the server has the necessary dependencies
installed to provide secure file copying. A return value of 0
implies the server does not support file copying, while a value of
1 implies it does.

KE::Export::Copy

 The "KE::Export::Copy" class allows the export files to be copied to
another location on the same machine. The command may also be used to
copy the export files onto a file system mounted on the same machine
(e.g. a SAMBA share).

Developing an After Export script

28

The After Export facility

Methods

 Execute()
 $copy = KE::Export::Copy->new();
 $status = $copy->Execute
 (
 destination => '/exports/nightly/',
 filelist => $export->GetData('FileList_tab')
);

 Performs a copy of the export files generated to another location
on the same host. Two named arguments are available, both are
mandatory:

 destination

 The directory in which the export files are to be placed. The
directory must exist.

 filelist

 A reference to a list containing the files to be copied to
another location.

 "Execute()" returns 0 if the copy succeeded, otherwise 1 is
returned. If an error occurs, it is written to stdout.

 IsSupported()

 $copy = KE::Export::Copy->new();
$status = $copy->IsSupported();

 Indicates whether the server has the necessary dependencies
installed to provide file copying. A return value of 0 implies the
server does not support file copying, while a value of 1 implies
it does.

KE::Export::Email

 The "KE::Export::Email" class allows an email notification to be sent
to a list of email addresses when a scheduled export is complete. If
the list of export files is provided, the files are sent as an
attachment to the notification email, otherwise just the result of the
export is emailed.

Methods

 Execute()
 $email = KE::Export::Email->new();
 $status = $email->Execute
 (
 recipients => 'user1@abc.com, user2@def.com',
 filelist => $export->GetData('FileList_tab')
);

 Emails the results of a scheduled export to a list of users. If
the export files are supplied, via the filelist named parameter,
the export files are attached to the email. Two named arguments
are available, one of which is mandatory:

 recipients

Developing an After Export script

The After Export facility

29

 A comma separated list of email addresses defining users who
should receive the results of the scheduled export. At least
one recipient must be supplied.

 filelist

 A reference to a list containing the files to be attached to
the email message. If a filelist is not supplied, only the
results are emailed to each user.

 "Execute()" returns 0 if the email succeeded, otherwise 1 is
returned. If an error occurs, it is written to stdout.

 IsSupported()

 $email = KE::Export::Email->new();
$status = $email->IsSupported();

 Indicates whether the server has the necessary dependencies
installed to provide email services. A return value of 0 implies
the server does not support emailing, while a value of 1 implies
it does.

Index

C

• ..C
reating an After Export script • 10, 13

D

• ..D
eveloping an After Export script • 7

K

• ..K
E
Export usage • 19

O

• ..O
verview • 1

S

• ..S
etting an After Export Command • 3

T

• ..T
he After Export script • 7

	The After Export script
	Creating an After Export script
	KE::Export usage
	Index

