

KE Texpress

SDI Guide

KE Software Pty Ltd

Copyright © 1993 - 2004 KE Software Pty Ltd
This work is copyright and may not be reproduced except
in accordance with the provisions of the Copyright Act.

3

Selective Dissemination
of Information

A new program has been developed to provide Selective Dissemination of
Information (SDI) facilities. SDI enables users to register query profiles
which are automatically compared with all new information entered into a
database. If a match is found, various different actions can be taken.

3.1 SDI Implementation

A typical implementation of SDI is shown in Figure 2.

Main Database

Query Profile
Database

Information is copied via the
duppath option into a file

 duppath file

texsdiagent

 notify file

texsdiagent drains information
from the duppath file

When a match is found,
information is written to the

notify file

tprofile consults the
Query Profiles database

Figure 2. Selective Dissemination of Information

4

The basic components of this configuration are as follows:

Main Database
This is the database, typically some sort of archive, upon which SDI
operates.

Query Profile Database
This is the database which stores the users' query profiles. Its Insertion
form generally appears the same as the Query form of the Main
Database.

Duppath File
All changes made to the Main Database are automatically copied to the
duppath file using the duppath=file option which must be set on the
Main Database.

Notify File
When a profile matches a record inserted into the Main Database, then
information from the profile and the record is written to the notify file.
Any other program can be used (or developed) to process the
information loaded into this file and perform actions such as notifying
users, etc.

texsdiagent
This process runs continuously (and in background) draining
information from the duppath file, matching it against the stored
profiles in the Query Profiles Database and, where appropriate, writing
information from the Main Database and the Query Profile Database
into the notify file.

The texsdiagent command requires several options. It can be invoked by a
command of the format:

texsdiagent [-aform] [-pform] [-tfile] archive infile profile outfile

where the compulsory arguments are:

archive the name of the Main Database on which SDI is to be performed.

infile the name of the duppath file.

profile the name of the Query Profile Database.

outfile the name of the notify file.

and the optional arguments are:

5

-aform the name of the Report form to be used to copy information from
the archive or Main Database record to the notify file. If this
option is omitted, the Insertion form of the Main Database is
used.

-pform the name of the Report form to be used to copy information from
the Query Profile record to the notify file. If this option is
omitted, the Insertion form of the Query Profile Database is
used.

-tfile the name of the temporary file used while it processes the
information from the duppath file. If this option is omitted, a
temporary file name is derived from the name of the duppath
file. This option is useful if the texsdiagent process should
become a bottleneck (i.e. not be able to keep up with the flow of
information from the Main Database) and it should become
necessary to run a second texsdiagent simultaneously. It is most
unlikely that this option will be required.

There are several design requirements which must be satisfied before
profiling can be successfully implemented. These include the following:

• The Query Profile Database must have the database option,
profile=yes, set. This changes the structure of the index. If this option
is set on an existing database, then that database must be reconfigured
and have its index rebuilt.

• The matching of profiles against records from the Main Database is
performed using all items from the Query Profile Database which have
the same item Id as an item in the Main Database. All other items from
each database are ignored during the comparison.

• The Query Profile database must only have indexing selected for items
which have the same item Id as an item in the Main Database. The
indexing type (stemming, phonetic, etc.) and the field type attributes
(such as text, string, etc.) should also be the same.

• Privilege levels of profiles and records from the main database are
observed. The privilege level of the stored query profile must be less
than or equal to (more privileged than) the privilege level of the record
from the Main Database.

6

3.2 Notification

There are several methods by which users can be notified of the arrival of
information matching one of their profiles. The Notify File is a text file the
contents and format of which are controlled by the Report forms used as
arguments to texsdiagent. This file can be processed by any program. It
should be noted, however, that the Notify File should be drained as it is
processed and locking of this file should also be observed.

Method 1

There are several tools which assist in building a notification facility. The
first is the program, texdrain, which can be used to drain a file, while
observing the locking on that file, and pass the information to its standard
output. This program can be run on the Notify File and can be piped into
another program or shell script to perform the actual notification.

The texdrain program can be invoked by a command of the format:

texdrain [-iot] [-rretries] [-sdelay] infile outfile

where the infile argument is the Notify File and the outfile should be - to
indicate standard output. Options are as follows:

-i Lock input file before reading data.

-o Lock output file before writing data.

-t Continually check input file for data.

-sn Wait n seconds between checks on input.

-rn Try to get lock n times.

For an SDI setup the typical use of texdrain would be as follows:

texdrain - it infile -

Typically, a shell script is used to process the information passed from
texdrain. This script generally identifies the name of the user who owns the
profile (part of the Report form from the Query Profile database used by
texsdiagent) and sends interactive notification and electronic mail to this
user. The script can make use of any standard Unix facilities, such as write
and mail.

7

A tool is provided for interactive notification. This tool is similar to the
Unix utility, write,. The program is called texnotify and instead of writing
to any one of a user's terminals, it searches for the most recently accessed
terminal to which it has permission to write. Thus if users are likely to be
logged in on several terminals simultaneously, texnotify will "follow" them
around as they move from terminal to terminal.

The texnotify command can be invoked by a command of the format:

texnotify [-fnrs] [-tn] user [file]

where the arguments are as follows:

user send the information to the Unix user, user. If this user is not
currently logged in, then texnotify silently exits.

file take information from file to send to the user. If this argument is
omitted, the standard input is read.

-f send the information to the first terminal to which it can write,
instead of searching for the most recently accessed terminal. This
is likely to be a little more efficient, particularly where users are
not likely to be logged in more than once simultaneously.

-n prevent the bell from ringing when the message is sent.

-r remove the file, file, after it has been sent.

-s the silent option - do not send a header identifying the source of
the message. In profiling applications, the source is generally
obvious from the content of the message.

-tn the number of seconds before timing out on writing to the
terminal.

Method 2

Another method for notification of users is to use a third database to hold
and process the notifications. This method uses texload with the -t option to
continuously drain the Notify File and load records into the Notification
Database. These records generally consist only of the Key value of the
record from the Main Database and the Key value from the Query Profile
record. These enable the Notification Database to link to and access all of
the information in the appropriate query profile and the record which
matched the profile.

A variety of different actions can be performed as side effects in the
validation of each record inserted into the Notification Database. These

8

actions can include copying information to a file using copyform() and then
using the system() call to perform actions like texnotify, mail, etc.

The records loaded into the Notification Database can be retained for the
user to peruse at some later date.

