
What are the indexing options in KE
EMu 3.1?

• Overview
• Existing index methods

o Key lookup
o Word indexing
o Stem indexing
o Phonetic indexing
o String indexing
o Range searching

• New index methods
o NULL indexing
o Partial indexing

• Indexing in KE EMu 3.1
• Adjusting indexing

Overview
KE EMu has a number of indexing methods for efficient and timely access to data. An
indexing method is an algorithm or set of rules to search data in an indirect way. The
simplest type of indexing, known as an exhaustive search, is no index at all! In this
case, each record in the system is read sequentially and compared against the search
terms entered. If there is a match, the record is added to the set of matching records,
then the next record is read. The exhaustive search method is very space efficient as
only the data needs to be stored. However, a search may take some time to complete if
there is a very large number of records (say several hours for 750,000 records).

To facilitate the search of large numbers of records, indexes are built that provide rapid
access to data that match given search criteria. Indexes provide an indirect means of
searching data in a judicious manner: when a search term is entered, the indexes are
consulted to produce the matching records. There is a cost associated with indexing: the
need to store indexing information along with the data. Thus indexing has a space
overhead, in so far as indexes use disk space to hold information, with the trade-off
being rapid retrieval.

There are a large number of indexing methods available to designers of databases, each
one with associated pros and cons. The EMu database engine employs two flexible
indexing methods to provide rapid retrieval of data from large numbers of records:

• The first is known as linear hashing and provides high speed key retrieval.
• The second goes by the long name of A two level superimposed coding scheme

for partial match retrieval, (shortened to the two level method) and provides a
general purpose framework for implementing a wide range of term based
searches. A term is simply a sequence of characters that forms the basic entity
for searching. For example, in word based searching (where you need only enter
a word to find matching records), a term is a word.

 1

This document describes the indexing methods available in EMu 3.1. The indexing that
was available prior to the release of EMu 3.1 is described first, followed by a
description of the additional methods in EMu 3.1. For the first time, it is also possible to
adjust indexing via Registry entries. These entries allow institutions to tune indexing
methods to provide the most efficient searching possible without wasting disk space on
unused methods.

Existing index methods
As mentioned above, EMu uses two basic indexing methods:

• The linear hashing method for key based searching (that is IRN searching)
• The two level method for all other searching

While the two level method dictates how a search should be executed internally, it is a
flexible method that supports a wide number of searching variations within the one
framework. For example, EMu provides word based searching for all fields. Simply
type in one or more words in any order into the field to be searched, and matches will be
quickly retrieved. EMu also supports phonetic based searching via the @ operator. If a
word is preceded with the @ character, all words that sound like the word entered will
be found. Phonetic searching uses the same indexing as word based searching even
though there are different results. The difference is in the definition of a term:

• For word based searching a term is a word.
• For phonetic searching a term is a series of numbers that represents the sound of

the word (using a complex algorithm that converts a word into its basic sound
groups).

Key lookup: linear hashing method

The linear hashing method is used to provide key based lookup. A key is a unique value
used to identify a record. In EMu this is the IRN (Internal Record Number). Not only
must key searching be fast, it must also enforce uniqueness. It must not be possible to
have two records with the same key (IRN). The linear hashing algorithm ensures that a
record can be located via the IRN in an average of 1.1 disk accesses, which is very
efficient. It also ensures key uniqueness.

Many institutions have numbering sequences that uniquely identify an object, for
example an Accession number. In some instances the number is almost always unique
apart from a few exceptions. EMu allows some fields to be designated as unique,
ensuring that when a record is saved the value in the field has not been entered before.
Sometimes this check may need to be relaxed to allow "duplicate" numbers to be saved.
The unique check performed on these fields (e.g. Loan Number) also uses the linear
hash method.

Word indexing: two level method

The basic searching provided in EMu is word based. A term in word based searching is
a sequence of alphabetic and numeric characters up to a word break character. A word

 2

break character consists of all punctuation characters except for apostrophes (') and
underscores (_), and all space characters. For example the string:

Relax. You know you're in safe hands.

consists of the words:
relax
you
know
youre
in
safe
hands

Notice how the punctuation is removed and the case is converted to lowercase
(searching is case insensitive). The words above are the search terms that can be used to
locate the sample string. When word based indexing is used, extra terms are generated
for word pairs (two consecutive words within the same sentence). For the above sample
the word pairs generated are:

relax you
you know
know youre
youre in
in safe
safe hands

The word pairs provide direct support for phrase based searching, that is a search where
the words are enclosed in double quotes (e.g. "in safe hands"). Enabling word based
searching automatically provides phrase based searching.

Stem indexing

In many instances it may be useful to search for variations on a base word regardless of
the tense or form of the word used. Consider a search for the word election:

• A word based search will return all occurrences of the word election, but it will
not find elect, elected, elector, electing, etc.

• A stem based search, which is specified by preceding a word with a tilde (~),
will find all variations of the word.

In stem based indexing the basic term is the root of the word (in this case elect).
Entering any variation of the word preceded by the ~ operator will result in a search for
the root word (e.g. searching for ~elected will result in the search term elect). The
algorithm to convert a word to its root word is a complex one that has been refined over
many years. It is not a simple truncation mechanism, otherwise ~elect would match
electric. The rules used to determine the root word are effective for English text only.

Stem based indexing is not enabled on many fields in EMu. If it is not enabled, stem
based searches are still possible, however the exhaustive search method is used. In
general, fields that contain descriptive text or notes based fields are good candidates for
stem indexing.

 3

Phonetic indexing

When searching for names or scientific terms it is often useful to be able to search for
records that contain words that sound like the search term. Phonetic based indexing
provides this functionality. The basic term for phonetic searching is a number sequence.
Each word is converted into a number sequence that encodes the basic sound groups
that make up the word. The number sequence is then used for the search and words that
generate the same number sequence (and hence sound the same) will be matched.

A phonetic search is specified by preceding a word with the @ character.

The algorithm used to convert a word into its basic sound group is very complex as
letters can take on different sounds depending on the letters that surround them. A
number of refinements to the basic algorithm have been made over many years.

Phonetic based indexing is not enabled on many fields in EMu. It is enabled on fields
that typically contain names (e.g. first name and surname fields). If phonetic indexing is
not enabled, phonetic based searching is still available, however the exhaustive search
method is used.

String indexing
Occasionally you may want a search to return records where only the exact value
entered in a field is matched. String based indexing uses the complete contents of the
field as the term for retrieval and only records that exactly match the search terms will
be returned. For example, two records have either one or the other of the following
values in a suburb field:

Melbourne
North Melbourne

A word based search using Melbourne as the search term will return both records (as
they both contain the word Melbourne). A string based search, using Melbourne will
only return the first record as only one record contains Melbourne and nothing else.

String based searching is not used widely in EMu (as word based searching provides a
more flexible and useful searching mechanism). It is enabled for the security fields
(SecCanDisplay_tab, SecCanEdit_tab and SecCanDelete_tab) used by Record
Level Security. Since Record Level Security uses group names and user names it is
useful to use string based searching to avoid mismatches on names (e.g. on a group
called Herpetology and another called Herpetology Managers).

Range searching

Some forms of data may be searched by locating all records between start and end
points, otherwise known as a range search. EMu provides range based searching for a
number of data types: latitude, longitude, date, time and numeric (both integer and
floating point) types. Range based searches are specified using the following relational
operators:

• Less than (<)
• Less than or equal to (<=)
• Greater than (>)
• Greater than or equal to (>=)

 4

To search for all records inserted between 1 January 2006 and 28 February 2006, in the
Date Inserted field you would specify:
>="1 January 2006" <="28 February 2006"

Note the use (and position) of the double quotes as the dates contain spaces.

Range based searching is a variation on the standard two level scheme used by the other
indexing methods. Essentially it divides the possible values for a range based field into
a series of discrete intervals. Then, for each field, value terms are generated to indicate
into which intervals the value falls. Using these terms it is possible to provide efficient
range based searches.

New indexing methods
EMu 3.1 introduces two new indexing methods, designed to provide increased support
for wildcard searches:

• Null based indexing provides very fast retrieval when searching for fields that
are empty/not empty.

• Partial based indexing offers full index support for wildcard queries that specify
leading letters.

Both these methods use the two level scheme. They simply provide different terms
based on the type of indexing required.

NULL indexing

Sometimes you may only be interested in whether a field contains a value or not. For
example, to determine whether records have been assigned to a department, you would
use the wildcard search, !*, in the Department field (SecDepartment_tab).

NULL based searching provides an additional term that indicates whether the field
contains a value or not. This term is used to provide high speed retrieval when certain
wildcard searches are used:

!* finds records where a field does not contain a value
* finds records where a field contains a value

Null based searching can also provide support for searches used to determine whether
an attachment field is empty or not:

!+ for records that do not have any attachments
+ for records that do have one or more attachments

Partial indexing

Most wildcard based searches (i.e. searches looking for patterns or part of a word)
specify leading letters. For example, you may want to find all people with a surname
starting with Al*. Since the standard EMu indexing is word based, wildcard based
searches must use the exhaustive search method to locate matches. Such a search may
take some time for very large numbers of records.

 5

Partial based indexing provides a mechanism for providing very efficient wildcard
searching where leading letters are specified (that is where one or more letters or digits
appear at the start of the pattern). The method takes each word in a field and generates a
term based on the number of leading letters indexed. Part of the partial based indexing
configuration is the number of letters to be used to generate partial terms. For example,
a field may be configured to provide partial indexing for the first 1,3,5 letters of each
word. If we take the sentence:

Relax. You know you're in safe hands.

the following terms are generated for partial based indexing:
r
rel
relax
y
you
k
kno
y
you
youre
i
s
saf
h
han
hands

Thus if we searched for rel* the three letter terms can be searched to locate the
matching records. The searching mechanism makes use of any indexing it can; for
example, if you search for re* the single letter terms are used to retrieve a set of
potential matches, which are then checked to see if the second letter matches. Partial
based indexing provides the same level of response for wildcard based searches where
leading letters are supplied as does word based searching.

Partial indexing is enabled on a small number of fields, typically fields containing
names or scientific terms.

Indexing in KE EMu 3.1
EMu 3.1 is distributed with a number of indexing options already configured. In
particular a number of fields that contain name based data already have phonetic based
indexing enabled. Also many descriptive fields (e.g. Notes) have stem based indexing
set. The indexing characteristics for fields have not been changed between EMu 3.0 and
3.1, except for the First and Last name fields in the Parties module. These fields have
null based indexing and partial based indexing (1,3,5) enabled.

A new Admin Task has been added to EMu 3.1 that allows users in group Admin to view
indexing information. An admin script called emuindexing produces a summary on a
per table basis of the type and indexing options set for each column in a table. If other
users need to run the script, install the following Registry entry:

Group|group|Table|eadmin|Admin Task|View System
Indexing|emuindexing

setting group to the name of the group that requires access.

 6

The output of the admin task looks like:
Table "eparties"
 irn
 Type: Integer
 Indexing: Key
 SummaryData
 Type: Text
 Indexing: Word, Phonetic
 ExtendedData
 Type: Text
 Indexing: Word
 NamPartyType
 Type: Text
 Indexing: Word

Using this output the indexing set on EMu fields can easily be determined. As there may
be a large number of tables in some institutions the Admin Task may take some time to
process all of the information (up to 10 minutes for a large system). The indexing
information may also contain columns that are not used by your institution. These
columns are sub-classed columns specific to a particular client. Enabling indexing on
these columns does not affect the size of the indexes generated as empty fields do not
generate any indexing information (unless null based indexing is enabled).

Adjusting indexing
The addition of null and partial based indexing provides new mechanisms for
enhancing response times for certain types of searches. Users may be tempted to enable
these new methods on a large number of fields, however there is a trade-off. The more
fields that have extra indexing enabled, the more disk space required to store those
indexes. As stated above, EMu 3.1 does not enable any new indexing (except for two
fields in the Parties module).

So how can the new methods be used? A series of new Registry entries is available that
allow indexing options to be set on fields. Using these Registry entries database
managers can decide which fields should have which indexing options enabled. The
new entries are:

System|Setting|Table|table|Stem Index|colname;colname;...
System|Setting|Table|table|Phonetic
Index|colname;colname;...
System|Setting|Table|table|Null Index|colname;colname;...
System|Setting|Table|table|Partial
Index|colname=parts;colname=parts;...

where:

table is the name of the table in which indexing is to be set
colname is the column on which the indexing is to be applied
parts (for partial indexing only) is a comma separated list of numbers
indicating the initial letters used for the partial index

To enable null based indexing on the Organisation name for example, the following
Registry entry could be used:

System|Setting|Table|eparties|Null Index|NamOrganisation

 7

You can determine the name of a field by using the What's this? help facility and
clicking the field you want to identify. The column name will appear in the title of the
field help window.

You may also want to enable partial based indexing on the Organisation and Other
Names fields. In order to provide fast wildcard searching you may decide to use the
first, first three and first five letters to produce terms. The following Registry entry
could be used:

System|Setting|Table|eparties|Partial
Index|NamOrganisation=1,3,5;NamOtherNames_tab=1,3,5

Once the entries have been added to the Registry module, the new indexing methods
will be applied when the next index rebuild is performed. For most institutions this is on
the weekend. If you require the indexes earlier than the next weekend, an index rebuild
should be initiated manually. If your system administrator has access to the EMu server,
then emureindex -p -f should be executed. If not:

1. Add the following entry to the Registry: User|emu|Table|eadmin|Admin
Task|Re-index System|emureindex -p -f

2. Login as user emu.
3. Run the Re-index System admin job.

Re-indexing may take some time and must not be performed while access to the system
is required. Once the re-index begins EMu is taken off-line (users cannot log in, web
access is disabled) until it completes. Generally, for larger systems, re-indexing should
only be performed overnight .

The current implementation only allows index methods to be added to columns. You
cannot remove indexing methods once they have been added (unless you are familiar
with altering schema characteristics via texdesign). Removing the Registry once the
index has been added does not remove it from the system until the next upgrade occurs.
When EMu is upgraded the changed tables are replaced with the "standard" distribution
tables. When the first re-index is run (as part of the upgrade) your extra indexing
methods will be applied.

Finally, it is not possible to have both stem and phonetic based indexing on the same
column. When one of these methods is enabled, the other is disabled automatically. The
current implementation does not provide any mechanism for enabling or tuning range
based indexing. It is expected that a future version of EMu will provide such a
mechanism.

 8

	What are the indexing options in KE EMu 3.1?
	Overview
	Existing index methods
	Key lookup: linear hashing method
	Word indexing: two level method
	Stem indexing
	Phonetic indexing
	String indexing
	Range searching

	New indexing methods
	NULL indexing
	Partial indexing

	Indexing in KE EMu 3.1
	Adjusting indexing

