

Copyright © 2009 KE Software Pty Ltd
This work is copyright and may not be reproduced except

in accordance with the provisions of the Copyright Act

EMu Documentation

FIFO Server
Document Version 1

EMu Version 4.0

FIFO Server i

Contents
S E C T I O N 1 FIFO Server 1

Overview 1

S E C T I O N 2 Invoking the FIFO server 3
Scripts and command line 4
KE Texpress Validation 5
C++ Client Code 6

S E C T I O N 3 FIFO Server plugins 7

S E C T I O N 4 Standard plugins 13
Centroid 13
System Lookup 13

Index 15

 FIFO Server

FIFO Server 1

S E C T I O N 1

FIFO Server

Overview
One issue with using a generic database server is that values often need to be
computed or processes invoked when saving a record. In many cases these
computations occur within the confines of the database server itself. In the case of
KE Texpress (the database engine used by EMu) a powerful scripting language
allows values to be computed and data adjusted when a record is saved. When a
command needs to be run, the system() call may be used. In the case where
complex data computations are required, particularly where the computed values
are the result of other table lookups, the system() call provides a useful solution.
The format of the call is:

result = system("command");

The "command" provided as the argument is run and the output returned. Where
values are computed, the output is assigned to one or more columns. If a process is
invoked (for example printing a specimen label), the output may be empty. The
system() call provides a useful mechanism for allowing external programs to be
invoked.

Similar functionality is available through the C++ TexVCL objects used by the
client. The KESession object provides the Execute() method:

status = Session->Execute("command", output, error);

where:

 command is the program to be executed.

 status is the exit status of the command (zero indicates the command
completed successfully).

 output is an AnsiString that receives any output sent to stdout.

 error is an AnsiString that receives any output sent to stderr.

Most script languages provide a mechanism for invoking commands from within
the script itself and capturing the output (e.g. perl has a system() call and also
provides back ticks).

The problem with invoking a command to start a process or to generate values is
the expense in terms of computing resources. Each command invoked needs to
learn about its environment (e.g. if a database table is consulted, the table schema
needs to be loaded each time the command is called). Also, due to the way
commands are started in a UNIX environment (via the fork() call), commands
invoked by large programs (e.g. texserver) start up slowly. It is this combination of
slow start up and the constant reloading of the environment that may result in a
high load being placed on the server machine.

FIFO Server Overview

2 FIFO Server

The FIFO service was introduced in KE EMu 4.0.01 to address these two issues:

• The first is addressed by removing the need to start a new command.
Instead the FIFO server provides mechanisms where KE Texpress, C++ client
code and scripts can ask the FIFO server to perform some function. Similar to
command execution, the return value is sent back to the caller. The big
difference however is that the FIFO server is running all the time, rather than
starting each time a request is made. This removes the need for a command to
be started.

• The second issue is addressed by the FIFO server providing access to resident
database servers, rather than starting a new database server each time data is
required. As the database servers are resident, the schema is only read when
the database server is first loaded.

Using the FIFO server dramatically increases the rate at which commands can be
executed, while lowering the overall load placed on the server. The FIFO server
has been designed to be extensible by adding plugins that provide new
functionality.

 FIFO Server

FIFO Server 3

S E C T I O N 2

Invoking the FIFO server
The FIFO server requires two pieces of information and returns one. The two
pieces of information required as input are:

 plugin The name of the function inside the FIFO server to be invoked. The
name can consist of any characters except a newline character. It is
normally descriptive (e.g. Centroid to invoke the centroid
calculator).

 data Information forwarded to the plugin used to compute values or start
processes. For example the data:

DMS|14 45 12 N|43 15 W

DEC|14.7845|-43.27

supplied to the Centroid plugin provides two latitude / longitude
points (the first set in Degrees / Minutes / Seconds and the second
as a decimal number of degrees) for which the centroid is to be
calculated. The format of the input data is plugin dependent.

The information returned is the computed value. The format of the data returned
depends on the plugin invoked. For example, the value returned for the above
Centroid input is:

14 46 8.1 N|43 15 36 W|14.76892|-43.260

where the first two values are the centroid expressed as DMS, and the next two
expressed as decimal degrees.

Only one instance of the FIFO server runs for a given client environment. All
users access this instance when requests are made of the FIFO server. In order to
ensure that all requests are handled serially, a simple file locking mechanism is
used. This guarantees that the correct output is received for the input provided.

The FIFO server is installed as a background load. The emuload command is used
on the server to control access:

To start the FIFO server use:
emuload start fifo

To check the status of the server use:
emuload status fifo

To stop the server use:
emuload stop fifo

Invoking the FIFO server FIFO Server

4 FIFO Server

Scripts and command line

The command emufifo is used to invoke the FIFO server from the command line
or from within a script. Its usage message is:
Usage: emufifo plugin [data]

where

 plugin name of fifo plugin to invoke

 data data passed to fifo plugin [default: stdin]

For the Centroid plugin example above, the following command could have been
used:
emufifo Centroid << EOF

DMS|14 45 12 N|43 15 W

DEC|14.7845|-43.27

EOF

14 46 8.1 N|43 15 36 W|14.76892|-43.260

The data may also be supplied as an argument:
emufifo Centroid "DMS|14 45 12 N|43 15 W

DEC|14.7845|-43.27"

14 46 8.1 N|43 15 36 W|14.76892|-43.260

giving the same response. emufifo is often used to debug new plugins.

FIFO Server Invoking the FIFO server

FIFO Server 5

KE Texpress Validation
The FIFO server may also be invoked from within KE Texpress. When a record is
saved, a validation handler is run. The handler checks for consistent data but may
also be used to compute values. The following code segment shows how to invoke
the FIFO server from within the validation handler:
/* FIFO settings.
*/
fifoin = getenv("EMUPATH") . "/loads/fifo/input";
fifoout = getenv("EMUPATH") . "/loads/fifo/output";
fifolock = getenv("EMUPATH") . "/loads/fifo/lock";

/* "System Yes" value
*/
if ((YES = getenv("SYSYES")) == "")
{
 YES = fifo(fifoin, fifoout, fifolock, "System
Lookup\nSystem Yes");
 setenv("SYSYES", YES);
}

The fifo() call is used to communicate with the FIFO Server. Its arguments are:

 fifoin The path to the input side of the FIFO server. The name of
the plugin and data are written to this file (the file is actually
a named pipe created when the server is invoked).

 fifoout The path to the output side of the FIFO server. The results
are read from this file (the file is also a named pipe created
when the server is invoked).

 fifolock The path to an empty file used as a lock to ensure that only
one process can access the FIFO server at a time. The
locking ensures that correct results are returned for a given
request.

 fifovalue The information to be forwarded to the FIFO server. The
first line must contain the name of the plugin to be invoked.
All remaining lines are passed to the plugin as data.

The code above calls the System Lookup plugin (which returns the value
associated with the name of the lookup list supplied as data), asking for the value
of the System Yes table. The returned value is remembered so it only needs to be
looked up once. The values for fifoin, fifoout and fifolock defined above
should always be used. Care should be taken with values returned by the FIFO
server. In many cases the return value may have a trailing newline character that
may need to be removed (in the case of the System Lookup plugin this is not the
case, but it is for the Centroid plugin).

Invoking the FIFO server FIFO Server

6 FIFO Server

C++ Client Code
A new method has been added to the KESession object that communicates with
the FIFO server. The method is:
AnsiString

__fastcall

KESession::Fifo(AnsiString fifoin, AnsiString fifoout, AnsiString
fifolock, AnsiString fifovalue)

The arguments are the same as for the Texpress validation call. The return value is
the information sent back from the FIFO server. In order to provide easier access
to the server, a new method has been added to the base window class TBaseFrm
that invokes Fifo() with the correct paths. The method is:
AnsiString

__fastcall

TBaseFrm::FifoServer(AnsiString plugin, AnsiString data)

The simplified version only requires the name of the plugin to invoke and any data
to be passed to it. For example to get the value of the System Yes lookup list, the
following call could be used:
AnsiString results = FifoServer("System Lookup", "System Yes");

 FIFO Server

FIFO Server 7

S E C T I O N 3

FIFO Server plugins
The FIFO server is designed to be extensible. In fact the server itself just provides
a framework without any services built in. All services are provided by plugins
that are loaded when the FIFO server is started. A plugin is really just a perl
library that contains a registration function used to define what plugin types are
handled. The standard plugins are located in etc/fifo, while client specific plugins
can be found in local/etc/fifo. When the FIFO server starts it looks in both the
standard and local directories for all files with a .pl extension (a perl library). The
file is loaded and the Register() function invoked to determine what plugins are
handled by the script.

The shell of a plugin looks like:
#!/usr/bin/perl

Copyright (c) 1998-2009 KE Software Pty Ltd

use strict;
use warnings;
no warnings 'redefine';

Registration function.

sub
Register
{
 my $plugins = shift;

 #
 # We handle the "Plugin Name" method.
 #
 $plugins->{"Plugin Name"} = \&Plugin;
}

The handler for the "Plugin Name" plugin

sub
Plugin
{
 my $plugin = shift;
 my $data = shift;

FIFO Server plugins FIFO Server

8 FIFO Server

 #
 # Plugin code
 #
}

1;

The Register subroutine is called by the FIFO server passing in a reference to a
hash. It is necessary to add the following to the hash:

• The name of the plugin to be handled.
• A reference to the function to invoke when the plugin is called.

As many different handlers as required may be registered within the one plugin.
When a call is made to the FIFO server and the plugin name matches the one
registered, the corresponding plugin subroutine is called. Two arguments are
supplied to the plugin subroutine:

• The plugin name that matched.
• A reference to a list of input lines (where the newline has been removed from

each line).

Any value returned by the handler is sent back to the caller.

An example may make things clearer. Let's create a local plugin that provides two
functions:

• Addition, which will add up all the numbers supplied as data.
• Multiplication, which will multiply the numbers supplied.

The plugin will be placed in local/etc/fifo/math.pl. The code is:
#!/usr/bin/perl

Copyright (c) 1998-2009 KE Software Pty Ltd

use strict;
use warnings;
no warnings 'redefine';

Registration function.

sub
Register
{
 my $plugins = shift;

 #
 # We handle the "Addition" and “Subtraction” methods.

FIFO Server FIFO Server plugins

FIFO Server 9

 #
 $plugins->{"Addition"} = \&Addition;
 $plugins->{"Multiplication"} = \&Multiplication;
}

The handler for the "Addition" plugin

sub
Addition
{
 my $plugin = shift;
 my $data = shift;
 my $total = 0;

 #
 # Add up the values supplied
 #
 foreach my $value (@{$data})
 {
 $total += $value;
 }
 return($total);
}

The handler for the "Multiplication" plugin

sub
Multiplication
{
 my $plugin = shift;
 my $data = shift;
 my $total = 1;

 #
 # Add up the values supplied
 #
 foreach my $value (@{$data})
 {
 $total *= $value;
 }
 return($total);
}

1;

Notice that the Register subroutine adds two handlers (one for Addition and one
for Multiplication). Associated with each handler is the subroutine to call when

FIFO Server plugins FIFO Server

10 FIFO Server

the handler is matched (Addition and Multiplication respectively). Next we
restart the FIFO server (using emuload stop fifo and emuload start fifo).
Now we can use emufifo to test our plugin:
emufifo Addition << EOF
1
2
3
4
EOF
10
emufifo Multiplication << EOF
1
2
3
4
EOF
24

Although the example above is trivial it does present the basics involved in setting
up a new plugin. In many cases the plugin needs to access data stored in a KE
Texpress table. In this case the plugin can use either OldServer() to get a
reference to a texql object (as defined in texql.pm) or NewServer() for a
reference to a texapi object (as defined in texapi.pm). Using either of these
objects you can retrieve data from existing tables and use it to build the result. As
an example the plugin below determines whether a given IRN has any child
records:
#!/usr/bin/perl

Copyright (c) 1998-2009 KE Software Pty Ltd

use strict;
use warnings;
no warnings 'redefine';

Registration function.

sub
Register
{
 my $plugins = shift;

 #
 # We handle the "Has Children" method.
 #
 $plugins->{"Has Children"} = \&Children;

FIFO Server FIFO Server plugins

FIFO Server 11

}

The handler for the "Has Children" plugin

sub
Children
{
 my $plugin = shift;
 my $data = shift;
 my $texql;
 my $row;

 #
 # Check if we have any records.
 #
 $texql = OldServer();
 $texql->Command(
 "select all from ecatalogue where ParParentRef = " .
$data->[0]);

 #
 # Get the result
 #
 $row = $texql->Row();
 $texql->Finish();

 #
 # Return the result
 #
 return(defined($row) ? "Yes" : "No");
}
1;

 FIFO Server

FIFO Server 13

S E C T I O N 4

Standard plugins
The FIFO server provides two standard plugins as part of the EMu 4.0.01
distribution. These are:

• Centroid
• System Lookup

Centroid
The Centroid plugin returns a single latitude / longitude point representing the
centre of a set of latitude / longitude points. The points can be supplied in either
DMS (Degrees Minutes Seconds) format or as a decimal degree. Each point must
be preceded by either DMS or DEC depending on the type of points supplied. The
value returned is the centroid in both DMS and DEC formats. The precision of the
supplied points is maintained in the result.
emufifo Centroid << EOF

DMS|14 45 12 N|43 15 W

DEC|14.7845|-43.27

EOF

14 46 8.1 N|43 15 36 W|14.76892|-43.260

System Lookup
The System Lookup plugin returns the text value for a given system lookup list.
The name of the lookup list is supplied as input and the language dependent value
is returned.
emufifo "System Lookup" "System Yes"

Yes

Index
C

C++ Client Code • 6

Centroid • 13
F

FIFO Server • 1

FIFO Server plugins • 7
I

Invoking the FIFO server • 3
K

KE Texpress Validation • 5
O

Overview • 1
S

Scripts and command line • 4

Standard plugins • 13

System Lookup • 13

	Overview
	Scripts and command line
	KE Texpress Validation
	C++ Client Code
	Centroid
	System Lookup

	Index

